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Abstract. We present a general approach to deriving energy stable numerical approximations for
thermodynamical consistent models for nonequilibrium phenomena. The central idea behind the
systematic numerical approximation is the energy quadratization (EQ) strategy, where the sys-

tem’s free energy is transformed into a quadratic form by introducing new intermediate variables.
By applying the EQ strategy, one can develop linear, high order semi-discrete schemes in time
that preserve the energy dissipation property of the original thermodynamically consistent model
equations. The EQ method is developed for time discretization primarily. When coupled with an

appropriate spatial discretization, a fully discrete, high order, linear scheme can be developed to
warrant the energy dissipation property of the fully discrete scheme. A host of examples for phase
field models are presented to illustrate the effectiveness of the general strategy.
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1. Introduction

Time-dependent dynamics or transient dynamics in nonequilibrium phenomena
is ubiquitous in science and engineering. One objective of scientific and engineering
research is to develop mathematical models to describe the complex dynamics for
various nonequilibrium systems. For material systems, especially, flowing materials,
the development of a viable models to describe nonequilibrium phenomena at a
given degree of freedoms is often not governed by a single physical equation unlike
the Maxwell equation in the electromagnetic theory or the Schrodinger equation
in quantum mechanics. Namely, universally accepted physical laws do not exist in
many material systems once the choice of the variables, time and length scales is
made. The Onsager principle has been proven to be an effective tool for one to arrive
at a reasonable theory for describing near nonequilibrium dynamics [34, 35, 57, 66,
67, 26]. The Onsager principle is consisted of the linear response theory for kinetics
and appropriate choices for describing reversible and irreversible dynamics within
the regime of the time and length scale selected. It is equivalent to the GENERIC or
the Poisson bracket formalism for non-equilibrium phenomena [2, 36], the energetic
variational principle coupled with the minimum dissipation principle [13, 46, 25],
and the second law of thermodynamics. But, the Onsager principle is easier to use
in practice.

In a nutshell, the Onsager principle [34, 35] simply states that for a matter
system, after one has identified the generalized coordinate, flux, and forces, there
exists a balance between the frictional force and the totality of the other forces.
It provides a specific way to calculate the frictional and the other forces. The
Onsager principle was proposed for dissipative systems. It can be extended to yield
a generalized Onsager principle to include reversible processes corresponding to
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transport phenomena. A large majority of the thermodynamic and hydrodynamic
models, if they are derived correctly, obey the generalized Onsager principle in that
the models possess a variational structure and admit energy dissipation laws.

Now that many models can be derived using the generalized Onsager principle,
can we develop a systematic approach to fully utilize the variational as well as
the dissipative structure in the models? The answer is positive. This paper aims
at developing such a systematic approach to obtaining a second order temporal
discretization for the thermodynamic model equations. This can form a paradigm
for the future development of effective numerical approximations to models that
describe non-equilibrium phenomena, enabling one to focus on more fine details or
higher order approximations as well as implementation efficiency.

For a given non-equilibrium model consisted of partial differential equations, a
high order approximation, computational efficiency as well as property preserving
at the discrete level are always the desired properties to attain. For the dissipative
system, one of the properties, one would like to preserve firstly, is the positive
entropy production rate, or equivalently the second law of thermodynamics. In
the isothermal case, it implies energy dissipation, commonly known as the energy
law. The type of numerical schemes that retains the energy dissipate property
at the discrete level is called the energy stable scheme. When the energy stability
property of the scheme is independent of the discrete step size, the scheme is termed
unconditionally energy stable. For these schemes, a large step size can be chosen
to compute numerical solutions of the model equations.

In the past, two distinct, broadly-used strategies for developing energy stable
schemes were proposed, which are the convex splitting approach [17, 53, 39, 52, 24]
and the stabilizing approach [32, 69, 73, 31, 42, 45, 44, 70, 74, 54, 7, 68, 43]. The
convex-splitting strategy relies on the existence of a pair of convex components that
give rise to the free energy as the difference of the two functions. If such a splitting
exists, a nonlinear scheme can be devised to render an unconditionally energy stable
scheme. The stabilizing approach augments discretized equations by high order
terms to turn the scheme into an energy stable scheme. Usually, this is accomplished
by adding additional dissipation to the numerical scheme. Both strategies can yield
dissipative schemes but do not guarantee to preserve the dissipation rate. Recently,
Badia, Guillen-Gonzales, Gutierres-Santacreu and Tierra explored a new idea of
transforming the free energy into a quadratic functional to derive energy stable
schemes [1, 23]. Recently, it is amplified and systematically applied to many specific
thermodynamic models by Yang, Zhao, Shen and Wang [58, 61, 8, 62, 56, 60, 65,
70, 64, 71, 72, 21, 22]. Yang, Zhao and Wang coined the name Invariant Energy
Quadratization (IEQ) method for this class of methods. Later, we abbreviated the
name to simply Energy Quadratization (EQ) method, which is more appropriate.
This strategy bypasses the traditional complicated ones to arrive at semi-discrete,
second order or higher order in time linear schemes readily. This strategy is so
general that it has little restriction on the specific expression of the free energy.

In this paper, we summarize the works that we have done using the EQ strategy
and present a general framework to discretize the thermodynamically consistent
models in forms of partial differential equations to arrive at linear, second order,
energy stable numerical schemes. Implied by the name of EQ, one introduces
new intermediate variables to quadratize the free energy of the model. Then, one
reformulates the thermodynamic model in the new variables. In all cases, the second
order in time, numerical scheme based on the linearized, implicit Crank-Nicolson
method can be applied to the models to arrive at energy stable schemes. The


