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Abstract. We analyze analytic approximation formulae for pricing zero-

coupon bonds in the case when the short-term interest rate is driven by a

one-factor mean-reverting process with a volatility nonlinearly depending on

the interest rate itself. We derive the order of accuracy of the analytical ap-

proximation due to Choi and Wirjanto. We furthemore give an explicit formula

for a higher order approximation and we test both approximations numerically

for a class of one-factor interest rate models.
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1. Introduction

Term structure models give the dependence of time to maturity of a discount
bond and its present price. One-factor models are often formulated in terms of
a stochastic differential equation for the instantaneous interest rate (short rate).
In the theory of nonarbitrage term structure models the bond prices (yielding the
interest rates) are given by a solution to a parabolic partial differential equation.
The stochastic differential equation for the short rate is specified either under a
real (observed) probability measure or risk-neutral one. A risk-neutral measure is
an equivalent measure such that the derivative prices (bond prices in particular)
can be computed as expected values. If the short rate process is considered with a
real probability measure, a function λ describing the so-called market price of risk
has to be provided. The volatility part of the process is the same for both real and
risk-neutral specification of the process. The changes in the drift term depend on
the so called market price of risk function λ.

It is often assumed that the short rate evolves according to the following mean
reverting stochastic differential equation

(1) dr = (α + βr)dt + σrγdw

where σ > 0, γ ≥ 0, α > 0, β are given parameters. In particular, it includes the
well known Vasicek model (γ = 0) and Cox-Ingersoll-Ross model (γ = 1/2) (c.f.
Vasicek (7) and Cox, Ingersoll and Ross (3)). For those particular choices of γ
closed form solutions of the bond pricing PDE (2) are known. Assuming a suitable
form of the market price of risk it turns out that both the real and risk neutral
processes for the short rate have the form (1). More details concerning the term
structure modeling can be found in Kwok (4).
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Using US Treasury Bills data (June 1964 - December 1989), the real probability
model (1) and generalized method of moments Chan et al. (2) estimated the pa-
rameter γ at the value 1.499. This is considered to be an important contribution,
as it drew attention to a more realistic form of the short rate volatility (compared
to Vasicek or CIR models). Using the same US Treasury Bills data, Nowman in (5)
estimated γ = 1.361 by means of Gaussian methodology. It should be noted that
these estimations of γ are beyond values γ = 0 or γ = 1

2 for which the closed form
solution of the bond prices is known in an explicit form. In (6) a model with interest
rates from eight countries using generalized method of moments and quasi maxi-
mum likelihood method has been estimated. They tested the restrictions imposed
by Vasicek and CIR models using the J-statistics in the generalized method of mo-
ments and likelihood ratio statistics in the quasi maximum likelihood method. In
all tested cases except of one, the restrictions γ = 0 or γ = 1

2 were rejected. Hence,
the study of the bond prices for values of γ different from 0 and 1/2 can be justified
by empirical results. However, in these cases no closed form expression for bond
prices is known. An approximate analytical solution was suggested in (1) which
could make the models with general γ > 0 to be more widely used. In this paper,
we analyze the analytical approximation by Choi and Wirjanto (1) and derive its
accuracy order. Furthemore, by adding extra terms to it we derive an improved,
higher order approximation of the bond prices.

The paper is organized as follows. In the second section, we derive the order of
approximation of the analytical approximative solution from (1). We derive a new,
higher order accurate approximation. In the third section, we compare the two
approximations with a known closed form solution from the CIR model (γ = 1

2 ).
In Appendix we provide a proof of uniqueness of a solution of a partial differential
equation for bond pricing for the parameter range 1

2 ≤ γ < 3
2 .

2. Accuracy of the analytic approximation formula for the bond price in

the one-factor interest rate model

In (1) the authors proposed an approximate analytical formula for the bond
price in a one-factor interest rate model. They considered a model having a form
(1) under the risk-neutral measure. It corresponds to the real measure process:

dr = (α + βr + λ(t, r)σrγ ) dt + σrγdw

where λ(t, r) is the so called market price of risk. For a general market price of risk
function λ(t, r), the price P of a zero-coupon bond can be obtained from a solution
to the following partial differential equation:

(2) −∂τP +
1

2
σ2r2γ∂2

rP + (α + βr)∂rP − rP = 0, r > 0, τ ∈ (0, T )

satisfying the initial condition P (0, r) = 1 for all r > 0 (see e.g. (4, Chapter 7)).

Definition 1. By a complete solution to (2) we mean a function P = P (τ, r) having
continuous partial derivatives ∂τP , ∂rP , ∂2

rP on QT = [0,∞) × (0, T ), satisfying
equation (2) on QT , the initial condition for r ∈ [0,∞) and fulfilling the following

growth conditions: |P (τ, r)| ≤ Me−mrδ

and |Pr(τ, r)| ≤ M for any r > 0, t ∈ (0, T ),
where M, m, δ > 0 are constants.

It is worth to note that comparison of approximate and exact solutions is mean-
ingful only if the uniqueness of the exact solution is guaranteed. The next theorem
gives us the uniqueness of a solution to (2) satisfying Definition 1. In order not to


