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WELL FLOW MODELS FOR VARIOUS NUMERICAL METHODS
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This paper is dedicated to the special occasion of Professor Roland Glowinski’s 70th birthdate.

Abstract. Numerical simulation of fluid flow and transport processes in the subsurface must
account for the presence of wells. The pressure at a gridblock that contains a well is different from
the average pressure in that block and different from the flowing bottom hole pressure for the
well [17]. Various finite difference well models have been developed to account for the difference.
This paper presents a systematical derivation of well models for other numerical methods such
as standard finite element, control volume finite element, and mixed finite element methods.
Numerical results for a simple well example illustrating local grid refinement effects are given to
validate these well models. The well models have particular applications to groundwater hydrology
and petroleum reservoirs.
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1. Introduction

Numerical simulation of fluid flow and transport processes in the subsurface
must account for the presence of wells. The pressure at a gridblock that contains
a well is different from the average pressure in that block and different from the
flowing bottom hole pressure for the well [17]. The difficulty in modeling wells in
a field scale numerical simulation is that the region where pressure gradients are
the largest is closest to a well and is far smaller than the spatial size of gridblocks.
Using local grid refinement around the well can alleviate this problem but can lead
to an impratical restriction on time step sizes in the numerical simulation [5]. The
fundamental task in modeling wells is to model flows into the wellbore accurately
and to develop accurate well equations that allow the computation of the bottom
hole pressure when a production or injection rate is given, or the computation of
the rate when this pressure is known.

The first theoretical study of well equations was given by Peaceman [17] for cell-
centered finite difference methods on square grids for single phase flow. Peaceman’s
study gave a proper interpretation of a well-block pressure, and indicated how it
relates to the flowing bottom hole pressure. The importance of his study is that the
computed block pressure is associated with the steady-sate pressure for the actual
well at an equivalent radius re. For a square grid with a grid size h, Peaceman
derived a formula for re by three different approaches: (1) analytically by assuming
that the pressure in the blocks adjacent to the well block is computed exactly by the
radial flow model, obtaining re = 0.208h, (2) numerically by solving the pressure
equation on a sequence of grids, deriving re = 0.2h, and (3) by solving exactly
the system of difference equations and using the equation for the pressure drop
between the injector and producer in a repeated five-spot pattern problem, finding
re = 0.1987h. From these approaches, he concluded that re ≈ 0.2h.
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Peaceman’s finite difference well models on square grids have been extended in
various directions, including to rectangular grids, anisotropic reservoirs, horizontal
wells, and multiphase flows and to incorporating gravity force, skin, and non-Darcy
effects. Peaceman himself extended his classical well model [17] to more general
scenarios [18] where rectangular grids and anisotropic permeabilities are allowed.
For the treatment of arbitrary well locations and horizontal wells, the reader can
refer to [2, 19]. Lee and Milliken [13] studied an arbitrary monobore well in a layered
system of laterally infinite extent. They combined a semianalytical solution based
on slender body theory with a finite difference pressure solution with lateral pressure
boundary conditions described by the semianalytical solution. Ding [8] introduced a
layer potential function to obtain a steady state pressure distribution in the vicinity
of the well. Furthermore, he adjusted well block transmissibilities to account for
radial flow. Later, Ding and Jeannin [9] developed a multipoint discretization
in a curvilinear coordinate system and used the discretization coefficient of an
elliptic equation as the well index. Recently, Wolfsteiner et al. [22] extended
Peaceman’s well models to account for different well configurations in heterogeneous
porous media. More recently, Chen and Yue [6] derived a well model by introducing
multiscale basis functions that resolve well singularity, and Aarnes [1] proposed a
modified mixed multiscale finite element method that can account for radial flow
near a well. Finally, Ewing et al. [10] and Garanzha et al. [11] developed numerical
well models that account for non-Darcy effects.

As far as the authors know, however, most of these existing well models have
been developed for finite difference methods [8, 17, 19]. On the other hand, finite
element methods have been successfully applied for numerical simulation of fluid
flow and transport processes in the subsurface due to their intrinsic grid flexibility
[5]. Thus it is clear that, to use finite element approximations in the presence of
wells, accurate well models must be derived for this important class of numerical
methods.

This paper presents a systematical derivation of well models for finite element
approximations of three types: (1) standard finite element methods, (2) control
volume finite element methods, and (3) mixed finite element methods. Extensions
of these numerical well models to anisotropic reservoirs, horizontal wells, and mul-
tiphase flows and to incorporating gravity forces and skin factors are also discussed.
For uniform grids and isotropic reservoirs, Peaceman’s second approach for deriv-
ing well models will be used. When the grids are nonuniform or the reservoirs
are anisotropic, we will make remarks on Peaceman’s third approach. Numerical
results for a simple well example illustrating local grid refinement effects are given
to validate the well models derived. To motivate the derivation of finite element
well models, the derivation of finite difference models is briefly reviewed.

The rest of the paper is organized as follows. The development of well equations
requires the use of analytical formulas, which is given in the second section. In the
third section, finite difference models are reviewed. The derivation of well models
for the standard, control volume, and mixed finite element methods is carried out,
respectively, in the fourth, fifth, and sixth sections. The seventh section is devoted
to numerical results. The well model equations derived in this paper have particular
applications to numerical simulation of aquifer remediation and of enhanced oil
recovery, for example.


