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ANALYSIS OF A STABILIZED FINITE VOLUME METHOD

FOR THE TRANSIENT STOKES EQUATIONS
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Abstract. This paper is concerned with the development and study of a stabilized finite volume
method for the transient Stokes problem in two and three dimensions. The stabilization is based
on two local Gauss integrals and is parameter-free. The analysis is based on a relationship between
this new finite volume method and a stabilized finite element method using the lowest equal-order
pair (i.e., the P1 − P1 pair). An error estimate of optimal order in the H1-norm for velocity and
an estimate in the L2-norm for pressure are obtained. An optimal error estimate in the L2-norm
for the velocity is derived under an additional assumption on the body force.
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1. Introduction

Finite difference, finite element, and finite volume methods are three major nu-
merical methods for solving engineering and science problems. The finite differences
are easy to implement and locally conservative but not flexible to handle complex
geometry. The finite elements have this flexibility but do not locally conserve mass.
The finite volumes lie somewhere between the finite differences and the finite ele-
ments. They have the flexibility to handle complicated geometry, and their imple-
mentation capability is comparable to that of the finite differences. Moreover, their
numerical solutions usually have certain conservation features that are desirable in
many engineering and science applications.

The finite volume method has a variety of names: the control volume, covolume,
and first-order generalized difference methods [3, 5, 7, 9, 12, 14, 22, 23, 24, 25, 29].
Compared to the finite element method, this method is harder to analyze; partic-
ularly, its stability and convergence for multidimensional partial differential equa-
tions is more difficult to establish. There exist some preliminary error estimates for
second-order elliptic and parabolic partial differential problems. However, for more
complex problems such as the Stokes problem under consideration, a fundamental
stability and convergence theory for the finite volume method is limited.

Recently, a new stabilized finite element method based on two local Gauss inte-
grals was developed for the stationary Stokes equations [18, 20]. This new method
stabilizes the lowest equal-order (i.e., P1−P1) elements by the residual of these local
integrals on each triangular element. It is free of stabilization parameters, does not
require any calculation of high-order derivatives or edge-based data structures, and
can be implemented at the element level. Optimal error estimates were obtained
using the technique of the standard finite element method [20]. More recently, this
stabilized finite element method was extended to the finite volume method for the
stationary Stokes equations [19]. After a relationship between this method and a
stabilized finite element method was established, an error estimate of optimal order

Received by the editors August 30, 2008.
2000 Mathematics Subject Classification. 35Q10, 65N30, 76D05.

505



506 L. SHEN, J. LI, AND Z. CHEN

in the L2- and H1-norms for velocity and an estimate in the L2-norm for pressure
were obtained.

In this paper, we extend the definition and analysis of the stabilized finite volume
method to the transient Stokes equations. The crucial argument in the analysis is
how to use the relationship between the finite element and finite volume methods
developed for the stationary problems to establish the desirable optimal error esti-
mates for the transient problems. This crucial argument will be developed in detail
here. This new finite volume method will be applied to porous media flow [6, 8].

This paper is organized as follows: In the next section, we introduce some nota-
tion, the transient Stokes equations, and their finite element discretizations. Then,
in the third section, a stabilized finite volume method for the transient Stokes
equations is developed, and a relationship between this method and a finite ele-
ment method is considered. Stability and optimal order estimates for the finite
volume method are obtained in the last three sections.

2. Preliminary

We focus on two dimensions; a generalization to three dimensions is straightfor-
ward. Let Ω be a bounded domain in ℜ2, with a Lipschitz-continuous boundary Γ,
satisfying a further condition stated in (A1) below. The transient Stokes equations
are

ut − ν∆u + ∇p = f, div u = 0, (x, t) ∈ Ω × (0, T ],(2.1)

u(x, 0) = u0(x), x ∈ Ω, u(x, t)|Γ = 0, t ∈ [0, T ],(2.2)

where u = u(x, t) = (u1(x, t), u2(x, t)) represents the velocity vector, p = p(x, t)
the pressure, f = f(x, t) the prescribed body force, ν > 0 the viscosity, T > 0 the
final time of interest, and ut = ∂u/∂t.

To introduce a variational formulation, set

X = (H1
0 (Ω))2, Y = (L2(Ω))2, M = L2

0(Ω) =

{

q ∈ L2(Ω);

∫

Ω

q dx = 0

}

,

V = {v ∈ X : div v = 0}, D(A) = (H2(Ω))2 ∩ V.

As noted, a further assumption on Ω is needed:
(A1) Assume that Ω is regular in the sense that the unique solution (v, q) ∈

(X, M) of the steady Stokes problem

−∆v + ∇q = g, div v = 0 in Ω, v|∂Ω = 0

for a prescribed g ∈ Y exists and satisfies

‖v‖2 + ‖q‖1 ≤ c‖g‖0,

where c > 0 is a constant depending only on Ω and ‖ · ‖i denotes the usual norm of
the Sobolev space Hi(Ω) or (Hi(Ω))2 for i = 0, 1, 2. Below the constant c > 0 will
depend at most on the data (ν, T, u0, Ω).

We denote by (·, ·) and ‖ · ‖0 the inner product and norm on L2(Ω) or (L2(Ω))2,
as appropriate. The spaces H1

0 (Ω) and X are equipped with their usual scalar
product and norm

((u, v)) = (∇u,∇v), ‖u‖1 = ((u, u))1/2.

Due to the norm equivalence between ‖u‖1 and ‖∇u‖0 on H1
0 (Ω), we are using

the same notation for them: It is well known that for each v ∈ X the following


