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Abstract. In this paper, the semi-implicit Euler (SIE) method for the sto-

chastic differential delay equations with Poisson jump and Markov switching

(SDDEwPJMSs) is developed. We show that under global Lipschitz assump-

tions the numerical method is convergent and SDDEwPJMSs is exponentially

stable in mean-square if and only if for some sufficiently small step-size ∆

the SIE method is exponentially stable in mean-square. We then replace the

global Lipschitz conditions with local Lipschitz conditions and the assump-

tions that the exact and numerical solution have a bounded pth moment for

some p > 2 and give the convergence result.
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1. Introduction

Stochastic modeling has come to play an important role in many branches of sci-
ence and industry and there are significant literatures that have been done concern-
ing approximate schemes for stochastic differential equations (SDEs) with Markov
switching [8, 12] or SDEs with Poisson jump [5, 6, 7].

In general, the future state of a system depends on the present and past states.
Hence, it is more significant to consider stochastic differential delay equations with
Poisson jump and Markov switching (SDDEwPJMSs). As many other equations,
SDDEwPJMSs cannot be solved analytically. Thus, it is necessary to develop
numerical methods and to study the properties of these methods. Finite time
convergence analysis of an Euler scheme is given in [13]. In this work, we consider
the finite time convergence of SIE method, the exponential mean-square stability
of analytic and SIE numerical solutions.

Throughout this paper, we let W (t) be a d-dimensional Brownian motion, N(t)
be a scalar Poisson process with intensity λ and independent of the Brownian
motion. Also we let r(t), t ≥ 0 be a right-continuous Markov chain taking values
in a finite state space S = {1, 2, . . . , N}. The corresponding generator is denoted
Γ = (γij)N×N , so that

P{r(t + δ) = j|r(t) = i} =

{
γijδ + o(δ) : if i 6= j,

1 + γijδ + o(δ) : if i = j,
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where δ > 0. Here γij is the transition rate from i to j satisfying γij ≥ 0 if
i 6= j while γii = −∑

j 6=i γij . Assume the Markov chain r(·) is independent of the
Brownian motion W (·) and Poisson jump N(·). We note that almost every sample
path of r(·) is right continuous step function with a finite number of sample jumps
in any finite subinterval of R+ := [0,∞).

In this paper, we need to work on the probability space (Ω, F , P) with a filtration
{Ft}t≥0 satisfying the usual conditions. To construct such a filtration, we denote
by N the collection of P-null sets, that is N = {A ∈ F : P(A) = 0}, For each t ≥ 0,
define Ft = σ(N ∪ σ(B(s), r(s), N(s) : 0 ≤ s ≤ t)).

We will use | · | to denote the Euclidean norm of a vector and the trace norm of a
matrix and < ·, · > to denote the scalar product. We will denote the indicator func-
tion of a set G by IG and denote by L2

Ft
([−τ, 0];Rn) the family of Ft-measurable,

C([−τ, 0];Rn)-valued random variables ϕ = {ϕ(t) : −τ ≤ t ≤ 0} such that

||ϕ||2E := sup
−τ≤u≤0

E|ϕ(u)|2 < ∞.

For µ ∈ R, In[µ] denote the integer part of µ. In this paper we consider the following
n-dimensional SDDEwPJMSs

(1.1)





dx(t) =f(t, x(t), x(τ(t)), r(t))dt + g(t, x(t), x(τ(t)), r(t))dW (t)

+ h(t, x(t), x(τ(t)), r(t))dN(t), t ≥ 0,

x(t) =ϕ(t), r(0) = r0, t ∈ [−τ, 0],

where f : R × Rn × Rn → Rn, g : R × Rn × Rn → Rn×d, h : R × Rn × Rn → Rn,
τ(t) satisfy:
there exists a positive constant ρ such that

(1.2) −τ ≤ τ(t) < t, and |τ(t)− τ(s)| ≤ ρ|t− s|, ∀t, s ≥ 0,

and ϕ(t) ∈ L2
F0

([−τ, 0];Rn) which is uniformly Hölder continuous with exponent
γ ∈ (0, 1], that is, there exists a constant M > 0 such that for all −τ ≤ s < t ≤ 0

(1.3) E|ϕ(t)− ϕ(s)|2 ≤ M(t− s)γ .

We also assume that

(1.4) a(t, 0, 0, i) = 0 ∀i ∈ S, a = f, g, h,

so Eq. (1.1) admits the zero solution x(t) = 0.
To define the SIE approximate solution, we will need the following lemma (see

[1]).

Lemma 1.1. Given ∆ > 0, let r∆
k = r(k∆) for k ≥ 0. Then {r∆

k , k = 0, 1, 2, . . .}
is a discrete Markov chain with the one-step transition probability matrix

(1.5) P(∆) = (Pij(∆))N×N = e∆Γ.

Given a fixed step size ∆ > 0 and the one-step transition probability matrix
P(∆) in (1.5), the discrete Markov chain {r∆

k , k = 0, 1, 2, . . .} can be simulated as
follows [8]. Let r∆

0 = r0 and compute a pseudo-random number ξ1 from the uniform


