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A NEW FINITE VOLUME METHOD FOR THE STOKES

PROBLEMS
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Abstract. A new finite volume method for solving the Stokes equations is

developed in this paper. The finite volume method makes use of the BDM1

mixed element in approximating the velocity unknown, and consequently, the

finite volume solution features a full satisfaction of the divergence-free con-

straint as required for the exact solution. Optimal-order error estimates are

established for the corresponding finite volume solutions in various Sobolev

norms. Some preliminary numerical experiments are conducted and presented

in the paper. In particular, a post-processing procedure was numerically inves-

tigated for the pressure approximation. The result shows a superconvergence

for a local averaging post-processing method.
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1. Introduction

In scientific computing for science and engineering problems, finite volume meth-
ods are widely used and appreciated by users due to their local conservative prop-
erties for quantities which are of practical interest (e.g., mass or energy). Among
many references, we would like to cite some which addresses theoretical issues such
as stability and convergence [5, 6, 10, 11, 15, 16, 20, 21, 22, 8, 9, 10, 28, 29]. The
goal of this paper is to investigate a finite volume method for the Stokes equations
by using the well-known BDM elements [3] originally designed for solving second
order elliptic problems. We intend to demonstrate how the BDM element can be
employed in constructing finite volume methods for the model Stokes equations.
The idea to be presented in the paper can be extended to problems of Stokes and
Navier-Stokes type without any difficulty.

Mass conservation is a property that numerical schemes should sustain in compu-
tational fluid dynamics. This property is often characterized as an incompressibility
constraint in the modeling equations. To sustain the mass conservation property
for the Stokes equations, several finite element schemes have been developed to
generate locally divergence-free solutions [12, 23]. In particular, a recent approach
by using H(div) conforming finite elements has been proposed and studied for a nu-
merical approximation of incompressible fluid flow problems [13, 25, 26]. The main
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advantage of using H(div) conforming elements is that the discrete velocity field is
exactly divergence-free. Another advantage of using H(div) conforming elements
is that the resulting linear or nonlinear algebraic systems can be easily decoupled
between the velocity and the pressure unknowns, largely due to the availability of
a computationally feasible divergence-free subspace for the velocity field. The pur-
pose of this paper is to further explore the H(div) conforming elements in a finite
volume context.

Our model Stokes equations are defined on a two-dimensional domain Ω. The
standard Dirichlet boundary condition is imposed on the velocity field. The Stokes
problem seeks a velocity u and a pressure p such that

−∆u+∇p = f in Ω,(1)

∇ · u = 0 in Ω,(2)

u = g on ∂Ω,(3)

where the symbols ∆, ∇, and ∇· denote the Laplacian, gradient, and divergence
operators, respectively. f is the external volumetric force, and g is the velocity
field on the boundary. For simplicity, we shall assume g = 0 in the algorithmic
description of the finite volume method. But the numerical experiments of Section
6 will be conducted for non-homogeneous data.

This paper is organized as follows. In Section 2, we introduce some notations
that help us to give a technical presentation. In Section 3, a weak formulation
is presented for the Stokes problem. Section 4 is dedicated to a presentation of
a finite volume scheme by using the BDM element. In Section 5, we provide a
theoretical justification for the finite volume scheme by establishing some error es-
timates in various norms. In addition to the standard H1 and L2 error estimates,
we shall include an estimate for the pressure error in a negative norm, which en-
sures a certain superconvergence for the pressure when appropriate postprocessing
methods are applied. In Section 6, a divergence-free finite volume formulation is
discussed. Finally in Section 7, we present some numerical results that demonstrate
the efficiency and accuracy of the new scheme.

2. Preliminaries and notations

We use standard notations for the Sobolev spaces Hs(K) and their associated
inner products (·, ·)s,K , norms ‖·‖s,K , and semi-norms | · |s,K , s ≥ 0 on a domain K.
The space H0(K) coincides with L2(K), in which case the norm and inner product
are denoted by ‖ · ‖K and (·, ·)K , respectively. The subscript K is suppressed
when K = Ω. Denote by L2

0(Ω) the subspace of L2(Ω) consisting of functions with
mean value zero. Let H(div,Ω) be the space of all vector functions in (L2(Ω))2

whose divergence is also in L2(Ω), and H0(div,Ω) be the space of all functions
v ∈ H(div,Ω) such that v · n = 0 on ∂Ω, where n is the unit outward normal
vector.

Throughout the paper, we adopt the convention that a bold character in lower
case stands for a vector. For simplicity, the Stokes problem (1)–(3) is assumed to
have a full regularity of u ∈ (H2(Ω))2 and p ∈ H1(Ω). In addition, we use . (&)
to denote less than (greater than) or equal to up to a constant independence of the
mesh size or other variables appeared in the inequality.

Let Th be a quasi-uniform triangulation of Ω with characteristic mesh size h.
Denote Eh to be the set of all edges in Th and E0

h = Eh\∂Ω to be the set of all
interior edges. Each triangle T ∈ Th is further divided into three subtriangles by
connecting the barycenter C to the vertices Ak, k = 1, 2, 3, as shown in Figure 1.


