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ADI FINITE DIFFERENCE SCHEMES FOR OPTION PRICING

IN THE HESTON MODEL WITH CORRELATION

K. J. IN ’T HOUT AND S. FOULON

Abstract. This paper deals with the numerical solution of the Heston par-

tial differential equation (PDE) that plays an important role in financial op-

tion pricing theory, Heston (1993). A feature of this time-dependent, two-

dimensional convection-diffusion-reaction equation is the presence of a mixed

spatial-derivative term, which stems from the correlation between the two un-

derlying stochastic processes for the asset price and its variance.

Semi-discretization of the Heston PDE, using finite difference schemes on

non-uniform grids, gives rise to large systems of stiff ordinary differential equa-

tions. For the effective numerical solution of these systems, standard implicit

time-stepping methods are often not suitable anymore, and tailored time-

discretization methods are required. In the present paper, we investigate four

splitting schemes of the Alternating Direction Implicit (ADI) type: the Douglas

scheme, the Craig–Sneyd scheme, the Modified Craig–Sneyd scheme, and the

Hundsdorfer–Verwer scheme, each of which contains a free parameter.

ADI schemes were not originally developed to deal with mixed spatial-

derivative terms. Accordingly, we first discuss the adaptation of the above

four ADI schemes to the Heston PDE. Subsequently, we present various nu-

merical examples with realistic data sets from the literature, where we consider

European call options as well as down-and-out barrier options. Combined with

ample theoretical stability results for ADI schemes that have recently been ob-

tained in In ’t Hout & Welfert (2007, 2009) we arrive at three ADI schemes

that all prove to be very effective in the numerical solution of the Heston PDE

with a mixed derivative term. It is expected that these schemes will be useful

also for general two-dimensional convection-diffusion-reaction equations with

mixed derivative terms.
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1. Introduction

In the Heston model, values of options are given by a time-dependent partial
differential equation (PDE) that is supplemented with initial and boundary condi-
tions [7, 14, 22, 24]. The Heston PDE constitutes an important two-dimensional
extension to the celebrated, one-dimensional, Black–Scholes PDE. Contrary to the
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Black–Scholes model, however, to date in the Heston model no closed-form ana-
lytical formulas have been found for any but the simplest options, and therefore
numerical techniques are applied.

A well-known and versatile strategy for the numerical solution of initial-boundary
value problems for multi-dimensional PDEs is the method-of-lines approach. In this
approach, the PDE is first discretized in the spatial variables, yielding large systems
of stiff ordinary differential equations. These, so-called, semi-discrete systems are
subsequently solved by applying a suitable numerical time-stepping method. Due to
the large size and the multi-dimensional structure of the obtained semi-discrete sys-
tems, standard time-stepping methods, such as the popular Crank–Nicolson scheme
(trapezoidal rule), are often not effective anymore, and tailored time discretization
methods are required.

For the numerical solution of the semi-discrete Heston PDE we shall study in
this paper splitting schemes of the Alternating Direction Implicit (ADI) type. In
the past decades, ADI schemes have been successful already in many application
areas. A main and distinctive feature of the Heston PDE, however, is the presence
of a mixed spatial-derivative term, stemming from the correlation between the two
underlying stochastic processes for the asset price and its variance. It is well-
known that ADI schemes were not originally developed to deal with such terms.
In the present paper, we will investigate the adaptation of several important ADI
schemes to the numerical solution of the Heston PDE with arbitrary correlation
factor ρ ∈ [−1, 1]. As test cases we will consider European call options and down-
and-out barrier options. Through various numerical examples with realistic data
sets from the literature, combined with ample theoretical stability results that have
recently been obtained, we arrive at three ADI schemes that all prove to be very
effective in the numerical solution of the Heston PDE with a mixed derivative term.
It is expected that these schemes will be useful also for general two-dimensional
convection-diffusion-reaction equations with mixed derivative terms.

An outline of our paper is as follows.
Section 2 discusses the Heston PDE and its numerical discretization. In Section

2.1 we formulate the Heston PDE together with initial and boundary conditions for
European call options. In Section 2.2 we describe a finite difference discretization
of the Heston PDE. A non-uniform spatial grid is used to capture the important
region around the strike. In Section 2.3 we formulate the ADI type schemes under
consideration in this paper for the semi-discrete Heston PDE with a mixed deriva-
tive term: the Douglas scheme, the Craig–Sneyd scheme, the Modified Craig–Sneyd
scheme, and the Hundsdorfer–Verwer scheme. Each of these contains a free param-
eter θ. We discuss the different origins of the four schemes and review theoretical
stability results that were recently obtained in [9, 10] concerning their application
to multi-dimensional convection-diffusion equations with mixed derivative terms.

Section 3 contains extensive numerical experiments. In Section 3.1 we study
the accuracy of our finite difference discretization in various examples of parameter
sets for the Heston model obtained from the literature. Here the availability of
Heston’s analytical pricing formula for European call options makes an actual com-
putation of the global spatial errors possible. In Section 3.2 we perform numerical
experiments with all the ADI schemes above, where we analyze the behavior of the
global temporal errors for each example introduced in Section 3.1. As an alterna-
tive method, we also consider a Runge–Kutta–Chebyshev scheme. In Section 3.3
we discuss numerical experiments for down-and-out call options. For these exotic


