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A SPECTRAL METHOD ON TETRAHEDRA

USING RATIONAL BASIS FUNCTIONS
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Abstract. A spectral method using fully tensorial rational basis functions

on tetrahedron, obtained from the polynomials on the reference cube through

a collapsed coordinate transform, is proposed and analyzed. Theoretical and

numerical results show that the rational approximation is as accurate as the

polynomial approximation, but with a more effective implementation.
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1. Introduction

Spectral/hp element methods, which are capable of extending the merits of spec-
tral methods to complex geometries, have become increasingly popular in com-
putational fluid dynamics, atmospheric modeling and many other fields [6, 15,
5]. While the quadrilateral/hexahedral spectral element methods (QSEM) have
achieved tremendous advances since the 80s [21, 18], considerable progress has been
made recently in the triangular/tetrahedral element methods (TSEM). The TSEM
have proven to be more flexible for complex domains and for adaptivity, and the cur-
rently existing approaches can be roughly classified as (i) the use of Koornwinder-
Dubiner polynomials [7, 23, 15]; (ii) approximations by non-polynomials on triangu-
lar elements [3, 13], and (iii) approximations by polynomials on triangular elements
using special nodal points such as Fekete points [14, 24, 19].

Although the use of polynomials on triangles/tetrahedra seems to be natural,
this also brings the loss of some flexibility and some difficult implementation issues.
For example, the Koornwinder-Dubiner polynomial basis functions, obtained from
the collapsed transform, are based on a warped tensor product, which is more com-
plicated in implementation and analysis than the standard tensorial case. However,
if one drops the requirement of being polynomials on the triangular/tetrahedral el-
ements, such issues can be circumvented. In a very recent paper [22], we proposed
a fully tensorial TSEM using rational basis functions obtained from the polyno-
mials in the reference square through a collapsed coordinate transform. This ap-
proach was shown to be at least as accurate as the warped tensorial TSEM using
Koornwinder-Dubiner polynomials, and be able to be effectively implemented as
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the QSEM due to the fully tensorial nature and the availability of the nodal ba-
sis. In this paper, we discuss the generalization of this method to the case of
three dimensional tetrahedron with an aim towards an adaptive element method
on unstructured meshes. The extension to three dimensions is nontrivial for sev-
eral reasons. Firstly, the collapsed transform from a tetrahedron to the reference
cube induces severer singularities (i.e., two faces of the cube are collapsed into one
edge and one vertex of the tetrahedron) than that of the two dimensional case.
Hence, much care has to be taken for dealing with the singularities in both imple-
mentations and analysis. On the other hand, the complication of geometry leads
to some additional difficulties for the construction of modal/nodal basis functions,
and numerical implementations as well.

The outline of the paper is as follows. In Section 2, we introduce the collapsed
coordinate transform and the rational basis functions. We also present some results
on the approximation properties of the new basis in Sobolev spaces. In Section 3, we
implement the rational spectral methods for some model equations on tetrahedron.
The final section is for the extension to the tetrahedral spectral elements and some
discussions. We end this section with some notations to be used throughout the
paper.

• Let Ω ⊆ R
3 be a bounded domain, and ω be a generic positive weight

function which is not necessary in L1(Ω). Denote by (u, v)ω,Ω :=
∫
Ω
uvωdΩ

the inner product of L2
ω(Ω) whose norm is denoted by ‖ · ‖ω,Ω. For any

m ≥ 0, we use Hm
ω (Ω) and Hm

0,ω(Ω) to denote the usual weighted Sobolev
spaces, whose norm and semi-norms are denoted by ‖u‖m,ω,Ω and |u|m,ω,Ω,
respectively. In case of no confusion would arise, ω (if ω ≡ 1) may be
dropped from the notations.

• Let N be the set of non-negative integers and Z
− the set of negative integers.

For any N ∈ N, we set I = (−1, 1) and denote by PN (I) the set of all
polynomials of degree ≤ N , and set P0

N (I) :=
{
φ ∈ PN(I) : φ(±1) = 0

}
.

• We use the expression A . B to mean that A ≤ cB, where c is a generic
positive constant independent of any function and of any discretization
parameters.

2. Rational basis functions and approximations on tetrahedra

We introduce in this section a family of orthogonal rational basis functions on
tetrahedra, and study its approximation properties in Sobolev spaces.

2.1. The collapsed coordinate transform. It is known that there exists an
affine mapping between the reference tetrahedron:

T =
{
(x, y, z) : 0 < x, y, z, x+ y + z < 1

}
,(2.1)

and any arbitrary tetrahedron TP with vertices P0 = (u0, v0, w0)
tr, P1 = (u1, v1, w1)

tr,
P2 = (u2, v2, w2)

tr and P3 = (u3, v3, w3)
tr, which takes the form





u = u0(1 − x− y − z) + u1x+ u2y + u3z,

v = v0(1− x− y − z) + v1x+ v2y + v3z,

w = w0(1− x− y − z) + w1x+ w2y + w3z.

In view of this, we shall restrict our attentions to the reference tetrahedron T . We
also introduce a second coordinate (ξ, η, ζ)−system on the reference cube Q :=


