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NONLINEAR MODEL REDUCTION USING GROUP PROPER

ORTHOGONAL DECOMPOSITION
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Abstract. We propose a new method to reduce the cost of computing nonlinear terms in projec-
tion based reduced order models with global basis functions. We develop this method by extending

ideas from the group finite element (GFE) method to proper orthogonal decomposition (POD)
and call it the group POD method. Here, a scalar two-dimensional Burgers’ equation is used as

a model problem for the group POD method. Numerical results show that group POD models

of Burgers’ equation are as accurate and are computationally more efficient than standard POD
models of Burgers’ equation.
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1. Introduction

A challenge in the simulation of systems modeled by partial differential equa-
tions (PDE) is to reduce computational cost while preserving accuracy. To this
end, much research in numerous aspects of the simulation of PDE has been per-
formed. These efforts include attempts to reduce computational cost by improving
algorithmic efficiency, developing parallel computing schemes, and applying model
order reduction techniques. For example, reduced order modeling for fluid flows
has seen extensive application of the Galerkin projection with proper orthogonal
decomposition (POD) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

In this work, we submit a new method to reduce the cost of computing nonlinear
terms in projection based reduced order models with global basis functions by
extending ideas from the group finite element (GFE) method to POD1. We shall
further refer to this approach as the group proper orthogonal decomposition (POD)
method.

The GFE method, also known as product approximation, expresses the nonlin-
ear terms of a PDE in grouped form - as the product of separate space and time
dependent quantities. This leads to the spatial discretization of nonlinear terms
being computed once before integration and a substantial reduction in computa-
tional cost [12, 13, 14]. Here, instead of projecting grouped nonlinear terms onto a
local finite element basis, we show that the projection of grouped nonlinear terms
onto a set of global basis functions reduces the cost of simulation due to symmetry
in the nonlinear terms. Although a Galerkin projection onto a POD basis is used
here for illustration, we anticipate this method to be generally applicable to other
global basis functions and Petrov-Galerkin projections.
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To determine the accuracy of the group POD method, computational solutions
of group POD and standard POD models of Burgers’ equation are compared to
analytical manufactured benchmark solutions [15, 16, 17, 18, 19]. Our experiments
show close agreement between simulations of the group POD and standard POD
models of Burgers’ equation.

To assess the computational cost of the group POD method, total integration
times and operation counts for the nonlinear terms of the group POD model of
Burgers’ equation are compared to the standard POD model. For the quadratic
nonlinearity of Burgers’ equation, our results show the group POD method provides
a clear computational advantage over the standard POD approach in terms of
operation count and total integration time.

Following this introduction, we provide background on POD and the GFE method.
The standard and group POD models of Burgers’ equation are developed in Section
3, followed by their implementation and operation counts in Section 4. Section 5
contains numerical results which demonstrates that group POD models of Burg-
ers’ equation are as accurate and are more efficient than the standard POD form.
Finally, we provide a mathematical extension of the group POD method to cubic
nonlinearities in Section 6.

2. Background

We begin by providing background on two concepts key to the group POD
method: proper orthogonal decomposition (POD) itself and the group finite el-
ement (GFE) method. While POD offers computational advantages through a
reduction in order, the GFE method offers computational gains through the con-
struction of nonlinear terms. Following the background on POD, we illustrate the
computational advantage of grouping the nonlinear terms with the GFE form of
Burgers’ equation.

2.1. Notation. To describe POD based model reduction for partial differential
equations, we use the following notation. Let X be a Hilbert space with its inner
product and corresponding norm denoted (·, ·)X and ‖·‖X , respectively. A function,

u, is in L2(0, T ;X) if for each 0 ≤ t ≤ T , u(t) is in X, and
∫ T

0
‖u(t)‖2X dt <∞.

2.2. Proper Orthogonal Decomposition (POD). At the turn of the twentieth
century, the closest fitting lines or planes to a set of points in space was investigated
by Pearson [20]. Independently, almost three decades later, a similar treatment
appeared by Hotelling where the “method of principal components” was coined
[21]. The analysis presented in [20] and [21] formed the linear algebraic approach
to what many now call proper orthogonal decomposition (POD).

Since the work of Pearson and Hotelling, many have studied or used POD in a
range of fields such as oceanography [22], fluid mechanics [1, 2, 4], system feedback
control [23, 24, 25, 26, 27, 28], and system modeling [5, 8, 10, 29]. Following
many predecessors, we use POD as tool for model reduction where the POD of a
function, u ∈ L2(0,∞;X), gives a basis that best represents u ∈ L2(0,∞;X) in a
mean-square sense [8, 9].

The method of snapshots is a practical approach to compute the POD of a
function known pointwise in time. The method of snapshots may be derived from
the continuous POD operator by assuming a piecewise constant representation of
u in time as shown in [9]. The remainder of this section outlines the procedure.


