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AN ENRICHED SUBSPACE FINITE ELEMENT METHOD FOR

CONVECTION-DIFFUSION PROBLEMS
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Abstract. We consider a one-dimensional convection-diffusion boundary value

problem, whose solution contains a boundary layer at the outflow boundary,

and construct a finite element method for its approximation. The finite element

space consists of piecewise polynomials on a uniform mesh but is enriched by

a finite number of functions that represent the boundary layer behavior. We

show that this method converges at the optimal rate, independently of the

singular perturbation parameter, when the error is measured in the energy

norm associated with the problem. Numerical results confirming the theory

are also presented, which also suggest that in the case of variable coefficients,

the number of enrichment functions need not be as high as the theory suggests.
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1. Introduction

Let p > 0, q > 0 be smooth functions, let ε ∈ (0, 1], and consider the problem

(1) Lu := −εu′′ + p(x)u′ + q(x)u = f(x) in (0, 1), u(0) = u(1) = 0.

It is well-known that the solution to this problem has a boundary layer at x = 1,
and that an accurate, robust numerical solution can be obtained by putting a
highly refined mesh, often called the “Shishkin mesh”, near this boundary point
[7, 9] ; see also [8] for other mesh choices used in conjunction with the high order p
and hp versions of the finite element method (FEM). In this paper we suggest an
alternate way to obtain an accurate and robust numerical method. We use a FEM
with a uniform mesh. The finite element subspace consists of the usual piecewise
polynomials subspace, enriched by a finite number of functions that represent the
boundary layer behavior. It is shown that this results in a numerical solution
with an ε-uniform error bound in the energy norm associated with the problem.
Numerical results are given to illustrate the method.

Perhaps the first use of boundary layer enrichment was given in the paper of Han
and Kellogg, [2]. Subsequent work related to this paper is found in Cheng-Temam,
[1], which also considers a singularly perturbed ordinary differential equation. The
paper [1] is restricted to an equation with constant coefficients, and uses only piece-
wise linear functions plus an enrichment function. The results are analogous to
those of the present paper. Jung and Temam [3, 4, 5] have applied enriched finite
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elements to a model singularly perturbed convection diffusion problem whose solu-
tion involves both ordinary and parabolic boundary layers. It would be interesting
to apply the enriched technique to problems with interior layers.

Section 2 gives some properties of the solution to (1) that are needed for our
error analysis. Section 3 formulates the enriched FEM and gives the error analysis.
Section 4 presents some numerical results.

We require that the functions p, q, f are sufficiently smooth. Also we assume

0 < pmin ≤ p(x) ≤ pmax < ∞,(2a)

q(x) > 0 in [0, 1],(2b)

q(x)−
1

2
p′(x) > 0 in [0, 1].(2c)

We let ‖w‖k denote the norm in the Sobolev space Hk(0, 1), and we use the
notation

‖w‖k,∞ = sup{|w(j)(x)| : x ∈ [0, 1], j = 0, · · · , k}.

We also use Dj
xw as well as w(j)(x) to denote the jth derivative of w with respect

to x. When there is no confusion, we will omit the subscript/variable and simply
write Djw or w(j). The letter C denotes a positive number that may be different
in different instances, but is always independent of ε and the mesh spacing h.

2. Solution properties

The solution properties for the problem (1) are well-known and may be found,
for example, in [7]. These properties are stated here in a form that is useful for our
analysis.

From (2b), solutions of (1) satisfy the maximum principle. Therefore the problem
(1) has a solution u, and ‖u‖0,∞ ≤ C‖f‖0,∞. For derivative bounds we cite [7,
Lemma 1.8]:

|u(k)(x)| ≤ C(f)
(

1 + ε−ke−pmin(1−x)/ε
)

.

Examining the proof one obtains

(3) |u(k)(x)| ≤ C‖f‖k,∞
(

1 + ε−ke−pmin(1−x)/ε
)

.

We now give a formal asymptotic expansion of the solution. This expansion
is also given in [7, p.22], but we derive it in greater detail in order to obtain the
information contained in Lemma 1.

Let Vn−1(x) =
∑n−1

j=0 εjvj(x). Then

(4)

LVn−1 =

n−1
∑

j=0

[

− εj+1v′′j + pεjv′j + qεjvj
]

= pv′0 + qv0 +

n−1
∑

j=1

εj
[

pv′j + qvj − v′′j−1

]

− εnv′′n−1.

Define the functions vj by

pv′0 + qv0 = f, v0(0) = 0,

pv′j + qvj = v′′j−1, vj(0) = 0 for j = 1, · · · , n− 1.


