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A UNIFORM NUMERICAL METHOD FOR A
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This paper is dedicated to G. I. Shishkin.

Abstract. A singularly perturbed quasilinear boundary-value problem is con-

sidered in the case when its solution has a boundary shock. The problem is

discretized by an upwind finite-difference scheme on a mesh of Shishkin type.

It is proved that this numerical method has pointwise accuracy of almost first

order, which is uniform in the perturbation parameter.
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1. Introduction

Consider the problem of finding a C2(0, 1)-function u = u(x) which solves the
following singularly perturbed boundary-value problem:

(1) −εu′′ − ub(u)u′ + uc(x, u) = 0, x ∈ (0, 1), u(0) = 0, u(1) = B,

where ′ = d/dx, ε is a small positive perturbation parameter, and B is a positive
constant. It is assumed that the functions b and c are sufficiently smooth and satisfy
certain conditions, the main ones being b > 0 and cu ≥ 0. All the assumptions are
specified in section 2. They are exactly the same as in [13] and they guarantee
that there exists a unique solution u of problem (1) and that u has an exponential
boundary layer at x = 0.

In [13], (1) is solved numerically by applying a layer-resolving transformation
which renders the derivatives of the transformed solution bounded uniformly in
ε. The transformed problem is then solved using finite-difference schemes on an
equidistant discretization mesh. The layer-resolving transformation corresponds to
mesh-generating functions used to create special meshes, dense in the boundary
layer, for discretizing the problem (1) directly, cf. [16]. Numerical results obtained
by this method show pointwise ε-uniform convergence. However, only L1 ε-uniform
convergence is proved in [13]. The same result is obtained in [18], but for an
exponentially-fitted equidistant finite-difference scheme and for a special case (b ≡
1) of problem (1). This special case has been recently considered in [17], where a
robust error estimate in the maximum norm is derived. This is achieved by applying
the approach in which the differential equation

(2) −εu′′ −
1

2
(u2)′ + uc(x, u) = 0
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is integrated from x to 1 and then the integral
∫ 1

x
u(t)c(t, u(t))dt is approximated

using the solution of the corresponding reduced problem, cf. [6, 5]. After the de-
scribed transformation, equation (2) becomes a Riccati equation, which is solved
by the method from [11]. This method uses the simple backward scheme on a
Shishkin-type mesh. The error of the approximate solution obtained in this way
can be estimated at each mesh point by

(3) M [ε+N−1(lnN)2],

where N is the number of mesh steps and M is a positive constant independent
of both ε and N . Since it often holds in practice that ε ≪ 1/N , this error es-
timate gives accuracy of almost first order (almost means here that the accuracy
is diminished by lnN factors). Nevertheless, strictly speaking, (3) does not mean
convergence uniform in ε. This result can still be used to achieve ε-uniform conver-
gence, but the method has to be combined with some classical method for solving
differential equations, see the discussion in [6, 5]. However, the order of ε-uniform
convergence resulting from the combination is lowered since the error can be esti-
mated by MN−ω with 0 < ω < 1. The goal of the present paper is to prove that
ε-uniform convergence of order almost 1 can be achieved.

In the numerical method considered here, contrary to [13, 17], the only transfor-
mation of the problem is to its conservation form which is then discretized by an
upwind finite-difference scheme on a Shishkin piecewise equidistant mesh. There
is nothing new about this numerical method, but its analysis is new. Crucial in
this is the technique from [9] used to discuss the stability of the discretization
scheme. It is originally applied in [9] to a semilinear singular perturbation problem
with a boundary turning point. The technique is here adjusted to the quasilinear
problem and relies heavily on the Shishkin mesh used. The result is the pointwise
error-estimate of the form MN−1(lnN)3.

The problem (1) can be referred to as a boundary-shock problem in contrast to
interior-shock problems for which the boundary condition at x = 0 is u(0) = A < 0,
see [4] and [10] for instance. The difficulty in trying to obtain ε-uniform pointwise
accuracy for interior-shock problems lies in the fact that the interior shock of the
numerical solution is shifted from the original location. The method of the present
paper can be applied to interior-shock problems only if the position of the shock
is known; then the interior-shock problem can be broken down to two problems of
type (1).

The rest of the paper is organized as follows. Properties of the continuous so-
lution are given in section 2, which is based on [13]. The numerical method is
described in section 3 and the main result is also proved there. Finally, section 4
contains some numerical results which illustrate the previously presented theory.

2. The continuous problem

The problem (1) is discretized in its conservation form,

(4) Tu := −εu′′ − f(u)′ + g(x, u) = 0, x ∈ (0, 1), Ru := (u(0), u(1)) = (0, B),

where B > 0,

f(u) =

∫ u

0

tb(t) dt, and g(x, u) = uc(x, u).

Although usually ε is small, a wider range of ε values is considered, ε ∈ (0, 1].
Detailed conditions on b and c follow, cf. [13]. Let X = [0, 1] and U = [0, B]. It

is assumed that b ∈ C2(U) and c ∈ C2(X ×U) since this is needed for the proof of


