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THE LOCAL DISCONTINUOUS GALERKIN METHOD

FOR OPTIMAL CONTROL PROBLEM GOVERNED BY

CONVECTION DIFFUSION EQUATIONS

ZHAOJIE ZHOU AND NINGNING YAN

Abstract. In this paper we analyze the Local Discontinuous Galerkin (LDG)

method for the constrained optimal control problem governed by the unsteady

convection diffusion equations. A priori error estimates are obtained for both

the state, the adjoint state and the control. For the discretization of the control

we discuss two different approaches which have been used for elliptic optimal

control problem.
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1. Introduction

In this paper, we consider the following linear-quadratic optimal control prob-
lems for state variable y and the control variable u involving pointwise control
constraints:

(1) min
u∈K⊂X

{
1

2

∫ T

0

∫
Ω

(y(x, t)− yd(x, t))
2dxdt+

α

2

∫ T

0

∫
ΩU

u(x, t)2dxdt

}
subject to

yt +∇ · (β⃗y − ε∇y) = f + Bu, x ∈ Ω, t ∈ (0, T ],

(β⃗y − ε∇y) · n⃗ = ỹ on ∂ΩI ,(2)

ε∇y · n⃗ = 0 on ∂ΩO,

y(x, 0) = y0(x), x ∈ Ω.

Here Ω and ΩU are bounded open sets in R2 with boundaries ∂Ω and ∂ΩU ; K ⊂ X
is bounded convex set. The details will be specified in the next section.

Although the a priori error estimates for finite element discretization of optimal
control problem governed by elliptic equations and parabolic equations have been
discussed in many publications, see, e.g., [1], [7], [13], [16], there are very few results
on the a priori error estimates of optimal control problem governed by convection
diffusion equations. Some related work can be find in, e.g., [2], [3], [5], [18].

In the optimal control problem (1)-(2), the state equation is a convection dif-
fusion equation. It is well known that the standard finite element discretizations
applied to the convection diffusion problem (2) lead to strong oscillation when
ε is small. There are some effective discretization schemes which are introduced

Received by the editors January 16, 2009 and, in revised form, October 22, 2009.

2000 Mathematics Subject Classification. 65N30.
The work was supported by National Nature Science Foundation under Grant 10771211 and

the National Basic Research Program under the Grant 2005CB321701 and 2010CB731505.

681



682 Z. ZHOU AND N. YAN

to improve the approximation properties of standard Galerkin method and to re-
duce the oscillatory behavior, see, e.g., [4], [11], [12]. Recently, a new discretization
scheme was proposed in [6] for the convection diffusion equation, which is called Lo-
cal Discontinuous Galerkin method. The analysis of Local Discontinuous Galerkin
method has been extended to many equations, such as, elliptic equation, nonlinear
convection diffusion equation, oseen equations and stokes equations .

In this paper, we use the Local Discontinuous Galerkin method to approxi-
mate the state equation in the optimal control problem (1)-(2). For the control
discretization we discussed two different methods. The first is the classic finite
element discretization. The control variable is discretized by piecewise constant
and piecewise linear finite element spaces, respectively. The second is a variational
approach proposed in [10], where no explicit discretization of the control variable
is used and the discrete control variable is achieved by projecting the discrete ad-
joint state variable on the admissible control set. For above LDG scheme, a priori
error estimates of the semi-discrete and fully-discrete approximation schemes for
the state, the adjoint state and the control are derived. To our best knowledge, the
similar results has not yet been reported in the open literature.

This paper is organized as follows: In Section 2, we introduce the model prob-
lem for the optimal control problem governed by the unsteady convection diffusion
equations and present the LDG approximation scheme of the model problem. In
Section 3, we prove a priori error estimate of the semi-discretization scheme for
the optimal control problem. In Section 4, a priori error estimate of the full dis-
cretization scheme for the optimal control problem is derived. In the last section,
we briefly summarize the method used, the results obtained and possible future
extensions and challenges.

2. LDG scheme for the optimal control problem

Let us introduce some standard notations. We adopt the notation Wm,q(Ω)
for Sobolev spaces on Ω, with a norm ∥ · ∥m,q,Ω and a semi-norm | · |m,q,Ω. For
q=2, we denote Hm(Ω) = Wm,2(Ω) and ∥ · ∥m=∥ · ∥m,2. Furthermore, we set

W 1,q
0 (Ω) = {v ∈W 1,q(Ω) : γv |∂Ω= 0}, where γv is the trace of v on the boundary

∂Ω. The inner products in L2(ΩU ) and L2(Ω) are indicated by (·, ·)U and (·, ·),
respectively. For p ∈ [1,∞), the internal [0, T ] ⊂ R and the Banach space A with
norm ∥ · ∥A, we denote by Lp(0, T ;A) the set of measurable functions y : [0, T ] → A

such that
∫ T

0
∥ y ∥pA dt ≤ ∞. The norm on Lp(0, T ;A) is defined by

∥ y(t) ∥Lp(0,T ;A)=

 (
∫ T

0
∥ y(t) ∥pA dt)

1
p , 1 ≤ p <∞,

ess sup
t∈[0,T ]

∥ y(t) ∥A, p = ∞.

In addition c and C denote generic constants.
In this section we provide a numerical scheme to approximate the distributed

convex optimal control problem governed by evolutionary convection diffusion equa-
tions. We shall take the control space X = L2(0, T ;U) with U = L2(ΩU ) to fix the
idea.

Consider the following constrained optimal control problem governed by evolu-
tionary convection diffusion equations:

(3) min
u∈K⊂X

{
1

2

∫ T

0

∫
Ω

(y(x, t)− yd(x, t))
2dxdt+

α

2

∫ T

0

∫
ΩU

u(x, t)2dxdt

}


