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A FAST ALGORITHM FOR VECTORIAL TV-BASED IMAGE
RESTORATION
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Abstract. In this paper, we first extend a simple algorithm proposed by Jia

et al. [16] to color/vectorial images, and then apply the vectorial algorithm to

some variational models for image restoration problems including color image

denoisings with the red-green-blue (RGB) and chromaticity-brightness (CB)

color representations, CB based colorization and image inpainting. The varia-

tional models are all total variation (TV)-based. The proposed vectorial algo-

rithm is simple and straightforward to implement. Some numerical experiments

show that it is fast and efficient.
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1. Introduction

Image restoration is an important research field in image processing. It is often
considered as a pre-processing step for other image tasks such as image segmenta-
tion, image registration and so on. Image restoration includes many aspects, for
example denoising, deblurring, inpainting, colorization, etc.

Over the past twenty years, total variation(TV)-based models proposed firstly
by Rudin, Osher, and Fatemi in [23] for gray image denoising have become very
popular. They have had very good applications in image denoising [1, 9, 8, 21],
deblurring [12, 15], inpainting [10, 19, 11, 24], colorization [18], and so forth. There
have been a lot of methods to solve these TV-based models like standard regularized
approach [23, 1], primal-dual method [7], duality based method [5], split Bregman
method [14], recent augmented Lagrangian method [25, 26, 27], etc. The classical
algorithms (standard regularized approach or explicit gradient descent flow) often
need to solve discrete Euler-Lagrange equations [23, 1, 2, 13], whose computational
speed is very slow due to the regularization process of the TV-norm. Later, Cham-
bolle [5] proposed a fast algorithm based on the dual formulation of TV-norm,
which avoided the regularization of TV-norm and hence speeded up the computa-
tion dramatically. Recently, Goldstein and Osher [14] gave a novel algorithm called
“split Bregman” method to solve these TV-based models. The key of their method
is that they de-coupled the `1 and `2 portions of TV model and transformed the
`1 regularized term to compressed sensing (CS) problems, which can be fast solved
by the Bregman iteration and shrinkage. The convergence of the split Bregman
iteration was shown in [14, 17] under the assumption that the resulting subproblem
is solved exactly. Cai et al. [4] had also proven that the alternating split Bregman
iterations are convergent when the number of inner iterations is fixed to be one.
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However, these iteration schemes [14, 17, 4] still require solving a partial differen-
tial equation in each iteration step. The augmented Lagrangian method [25, 26, 27]
was presented to solve TV models via a splitting technique and the Lagrange mul-
tiplier method. Some subproblems can be efficiently solved by shrinkage and fast
Fourier transformation (FFT) implementation, where the FFT technique is used
for solving a differential equation, and thus cuts down the computational time. But
it is still less efficient than the direct closed form solution. More recently, Jia and
Zhao [16] proposed a fast and simple algorithm to solve the Rudin-Osher-Fatemi
(ROF) model/ TV denoising model. Their algorithm did not include any partial
differential equations and had very simple iteration steps, which saved more com-
putational time. What’s more, they also gave a rigorous proof of the convergence
of their algorithm.

In this paper, we extend Jia and Zhao’s algorithm [16] to vectorial TV model,
and then apply it to vector-valued image restoration problems such as a color
image restoration. Here, we mainly focus on three restoration problems: color de-
noisings by vectorial TV-based denoising models in the red-green-blue(RGB) and
chromaticity-brightness(CB) representations of color images [1, 9, 8]; image col-
orization based on CB color model [18]; and image inpainting [10, 19] by TV-based
model for gray and color images. The proposed algorithm has several advantages.
First, it has a very simple form, which will be favorable to making code. Then,
the number of iterations to reach the solution is low, which gives a fast algorithm.
Finally, the algorithm converges to the solution of the original vectorial TV mini-
mization problem if appropriate parameters are chosen.

This paper is organized as follows. In Section 2, we introduce some notations
and extend Jia and Zhao’s algorithm to vector-valued functions so that the speed
of the vectorial image processing is faster. The applications of the algorithm to
image restoration including color image denoisings based on RGB and CB color
representations, CB-based colorization and inpainting for gray and color images
are shown in Section 3. At last, in Section 4, we present a brief conclusion.

2. Proposed algorithm for vectorial TV minimization

2.1. Notations. As in [17], we adopt the discrete form of the vectorial TV model.
Let us consider a q-dimensional/channel image u defined on a rectangular domain
Ω as follows:

u : Ω → Rq,

(x, y) → u(x, y) =
(
u1(x, y), u2(x, y), · · · , uq(x, y)

)
.

Discretizing the image domain Ω to some grid points, then

u : {1, · · · ,M} × {1, · · · , N} → Rq,

(m,n) → (
u1(m,n), u2(m,n), · · · , uq(m,n)

)
,

where M,N ≥ 2 and q ≥ 1.
When q = 1, the image is scalar; otherwise, the image is vector-valued.
We shall use the following norm and inner product notations:

‖u‖p :=
( ∑

1≤m≤M
1≤n≤N

|u(m,n)|p
)1/p

, for 1 ≤ p < ∞,

〈
u(m, n),v(m,n)

〉
:=

q∑

i=1

ui(m,n) · vi(m, n),


