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ANALYSIS OF AN INTERACTION PROBLEM BETWEEN AN

ELECTROMAGNETIC FIELD AND AN ELASTIC BODY

ANTONIO BERNARDO, ANTONIO MÁRQUEZ, AND SALIM MEDDAHI

Abstract. This paper deals with an interaction problem between a solid and

an electromagnetic field in the frequency domain. More precisely, we aim to

compute both the magnetic component of the scattered wave and the elastic

vibrations that take place in the solid elastic body. To this end, we solve a

transmission problem holding between the bounded domain Ωs ⊂ R3 repre-

senting the obstacle and a sufficiently large annular region surrounding it. We

point out here that (following Voigt’s model, cf. [12]) we only allow the elec-

tromagnetic field to interact with the elastic body through the boundary of

Ωs. We apply the abstract framework developed in the work [3] by A. Buffa

to prove that our coupled variational formulation is well posed. We define the

corresponding discrete scheme by using the edge element in the electromagnetic

domain and standard Lagrange finite elements in the solid domain. Then we

show that the resulting Galerkin scheme is uniquely solvable, convergent and

we derive optimal error estimates. Finally, we illustrate our analysis with some

results from computational experiments.
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1. Introduction

In this paper we develop a finite element method for a time-harmonic problem
that models the interaction between an elastic body and an electromagnetic field.
We consider a solid occupying a bounded region Ωs ⊂ R3 and assume that it is
subject to a given incident electromagnetic wave. Actually, we suppose here that
the electromagnetic field occupies an annular region Ωm whose exterior boundary
Γ is located far from the obstacle (the solid body) and impose on this artificial
closed surface a boundary condition compatible with the behavior of the scattered
field at infinity. Moreover, we assume that the penetration of the electromagnetic
field inside the body is not large enough to consider. The interaction between the
electromagnetic field and the elastic body is only governed by the equilibrium of
tangential forces on the interface Σ := ∂Ωs. This model problem is a simplification
of the one presented by Cakoni and Hsiao in [7]. To the best of our knowledge, the
numerical study of this interaction problem has not been treated in the literature.
Our aim is to provide a finite element Galerkin scheme that permits one to compute
both the scattered electromagnetic wave and the elastic vibrations of the solid.
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Once the variational formulation is derived, it becomes clear that the term cou-
pling the elastodynamics equation in Ωs and Maxwell equations in Ωm is a com-
pact perturbation (see (29) below). This means that we are almost left with an
separate study of both equations in each domain. The primal formulation of the
elasticity problem in Ωs is standard. The operator arising from the corresponding
primal formulation of the elastodynamics equation fails to be elliptic due to the
“wrong” sign of the zero order term. Nevertheless, the compactness of the embed-
ding H1(Ωs) →֒ L2(Ωs) allows one to use successfully a Fredholm alternative to
analyze its solvability.

The Maxwell problem is more intricate since it does not fit in any classical theory
for proving well-posedness. Actually, since the canonical embeddingH(curl ,Ωm) →֒
[L2(Ωm)]3 is not compact, it is not possible to employ a Fredholm alternative, at
least for the original form of the resulting variational formulation. The difficulty
is then related to the noncoerciveness of the sesquilinear form arising in the study
of Maxwell equations (written here in terms of the magnetic field). A Helmholtz-
type decomposition of the magnetic field is usually proposed in order to reveal
hidden compactness properties that permits to deal with the study of this problem
through a classical analysis, see [3, 13] and the references cited therein. Actually,
Buffa [3] succeeded in setting up this technique in a general abstract framework.
We follow here this technique, our analysis is based on a suitable decomposition of
HΓ(curl ,Ωm) (see (18) below) that renders possible the application of a Fredholm
alternative to the whole coupled problem. The corresponding discrete scheme is
defined with the first order Nédélec element (also known as the edge element) in
the electromagnetic domain and traditional first order Lagrange finite elements in
the solid. The stability and convergence of this Galerkin method also relies on a
stable decomposition of the finite element space used to approximate the magnetic
field.

The remainder of the paper is organized as follows. In the next section we recall
some essential tools related with tangential trace operators in the spaceH(curl ,Ω).
In sections 3 and 4 we give a brief description of the model problem and derive its
coupled variational formulation. In section 5, we use a Fredholm alternative to show
that, under some regularity conditions on the coefficients, the problem is well-posed.
The corresponding Galerkin scheme is analyzed in section 6. Finally, in section 7 we
provide results from numerical experiments that confirm our theoretical assertions.

We end this section with some notations to be used below. Since in the sequel we
deal with complex valued functions, we let C be the set of complex numbers, use the
symbol ı for

√
−1, and denote by z and |z| the conjugate and modulus, respectively,

of each z ∈ C. In addition, given any Hilbert space U , [U ]3 denotes the space of
vectors of order 3 with entries in U . Given σ := (σij), τ := (τij) ∈ C

3×3, we

define as usual the transpose tensor τ t := (τji) , the trace tr(τ ) :=
∑3

i=1 τii and

the tensor product σ : τ :=
∑3

i,j=1 σij τij . Finally, in what follows we utilize the
standard terminology for Sobolev spaces and norms, employ 0 to denote a generic
null vector, and use C , with or without subscripts, to denote generic constants
independent of the discretization parameters, which may take different values at
different places.

2. Preliminaries

We denote by Ω ⊂ R3 a generic bounded polyhedral domain and let n be the
outward normal vector on its boundary Σ. We recall that

H(curl ,Ω) :=
{

w ∈ [L2(Ω)]3; curlw ∈ [L2(Ω)]3
}


