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Abstract. We study extensions of the energy and helicity preserving scheme

for the 3D Navier-Stokes equations, developed in [23], to a more general class of

problems. The scheme is studied together with stabilizations of grad-div type

in order to mitigate the effect of the Bernoulli pressure error on the velocity

error. We prove stability, convergence, discuss conservation properties, and

present numerical experiments that demonstrate the advantages of the scheme.
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1. Introduction

This paper extends the methodology of the enhanced-physics based scheme for
the 3D Navier-Stokes equations (NSE) proposed in [23] (defined in Section 2) from
its original derivation for space-periodic problems to a more general class of prob-
lems. This scheme is referred to as enhanced-physics because it is the only scheme
that conserves both discrete energy and discrete helicity for the full 3D NSE. The
key ingredient for the dual conservation scheme is using the rotational form of
the nonlinearity with a projected vorticity, which allows the discrete nonlinearity
to preserve both of the quantities. Since the (continuous) NSE nonlinearity con-
serves both energy and helicity, and jointly cascades them from the large scales
through the inertial range to small viscosity dominated scales [3, 5], if the discrete
nonlinearity does not also conserve energy and helicity it will introduce numerical
error into the cascade, and bring into question the physical relevance of computed
approximations.

It is a widely held belief in computational fluid dynamics (CFD) that the more
physically correct a numerical scheme is, the more accurate its predictions will
be, especially over long time intervals. In systems of conservation laws for fluids
there is typically a second integral invariant in addition to energy, and its accurate
treatment in a numerical scheme generally produces more accurate simulations
than do schemes that do not specifically conserve this quantity. Beginning with
Arakawa’s energy and enstrophy conserving scheme for the 2D NSE [1] and related
extensions [8], to energy and potential enstrophy schemes pioneered by Arakawa and
Lamb, and Navon, [2, 19, 20], and most recently to an energy and helicity conserving
scheme for 3D axisymmetric flow by J.-G. Liu and W. Wang [16], enhanced physics
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based schemes have provided more accurate simulations, especially over longer time
intervals.

The fundamental challenge in extending the scheme of [23] to non-periodic prob-
lems is to avoid the large errors often present when the rotational form of the
nonlinearity and the Bernoulli pressure is used. In the usual a priori error analysis
for the velocity approximation for the NSE, a consequence that the discrete diver-
gence free velocity is not exactly divergence free, is a pressure error contribution

(1.1)
C

ν
inf

qh∈Qh

‖p− qh‖

where ν = 1/Reynolds number denotes the kinematic viscosity [9, 15]. For prob-
lems whose pressure gradients are small this term is often negligible. However, using
the rotational form of the NSE, and introducing the Bernoulli pressure p + 1

2 |u|
2

can bring prominence to this term, since the gradient of the Bernoulli pressure may
be large due to boundary layers in the velocity field.

Following recent work in [14, 17, 4], a natural way to mitigate the pressure’s
error influence on the velocity approximation is to introduce grad-div stabilization.
As we show, this reduces the effect of the Bernoulli pressure error. In the interest
of physical fidelity, we also introduce a modified grad-div stabilization having the
same effect on the error, but with less impact on the energy balance. Computational
results show a slight improvement when this altered stabilization is used instead of
usual grad-div stabilization.

This paper is arranged as follows. Section 2 presents mathematical preliminaries
and notation, and defines the scheme studied in the remainder of the article. Section
3 is a study of stability and conservation laws for the scheme, and Section 4 presents
a rigorous convergence analysis. Section 5 shows a numerical example which clearly
illustrates the advantage of the scheme. Concluding remarks are given in Section
6.

2. Mathematical Preliminaries

We assume that Ω denotes a polyhedral domain in R
3. The L2(Ω) norm and

inner product are denoted by ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms and the
Sobolev W k

p (Ω) norms are denoted ‖ · ‖Lp and ‖ · ‖Wk
p
, respectively. For the semi-

norm in W k
p (Ω) we use | · |Wk

p
. Hk is used to represent the Sobolev space W k

2 (Ω),

and ‖ · ‖k denotes the norm in Hk. For functions v(x, t) defined on the entire time
interval [0, T ], we define (1 ≤ m < ∞)

‖v‖∞,k := ess sup
[0,T ]

‖v(t, ·)‖k , and ‖v‖m,k :=

(

∫ T

0

‖v(t, ·)‖mk dt

)1/m

.

For the analysis in this paper, we assume no slip (i.e. homogeneous Dirichlet)
boundary conditions for velocity and therefore use as our velocity and pressure
spaces

X := (H1
0 (Ω))

d, Q := L2
0(Ω) ,

where Q is denoting the mean zero subspace of L2(Ω).
We use as the norm on X the H1 seminorm which, because of the boundary

condition, is a norm, i.e. for v ∈ X , ‖v‖X := ‖∇v‖. We denote the dual space of
X by X⋆, with the norm ‖ · ‖⋆. The space of divergence free functions is defined by

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q} .


