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Abstract. In this paper, we propose a domain decomposition method with La-

grange multipliers for three-dimensional linear elasticity, based on geometrically

non-conforming subdomain partitions. Some appropriate multiplier spaces are

presented to deal with the geometrically non-conforming partitions, resulting

in a discrete saddle-point system. An augmented technique is introduced, such

that the resulting new saddle-point system can be solved by the existing it-

erative methods. Two simple inexact preconditioners are constructed for the

saddle-point system, one for the displacement variable, and the other for the

Schur complement associated with the multiplier variable. It is shown that the

global preconditioned system has a nearly optimal condition number, which is

independent of the large variations of the material parameters across the local

interfaces.
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1. Introduction

In recent years, there has been a fast growing interest in the domain decom-
position methods (DDMs) with Lagrange multipliers, which were studied early in
[6], [7], and [22]. Such DDMs have many advantages over the traditional DDMs in
applications (cf. [1], [5], [21]). In this paper, we will develop a domain decompo-
sition method with Lagrange multipliers to solve compressible elasticity problems
in three dimensions. We consider certain geometrically non-conforming subdomain
partitions with meshes that are nonmatching across the subdomain interfaces.

The Lagrange multiplier DDM has been developed as a non-conforming dis-
cretization method, such that the resulting approximation possesses the optimal
accuracy, see [4], [20], [26]. For this purpose, the jumps of the solutions across the
subdomain interfaces would be orthogonal to a certain Lagrange multiplier space,
which should be appropriately chosen. This weak continuity condition leads to a
saddle-point system for the displacement variable and the multiplier variable. It is
known that the displacement variable corresponds to a singular problem on each
floating subdomain. There exist many techniques to deal with such singularity,
for example, the FETI-type methods [7, 8, 9, 19], regularized method [12] and
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augmented method [15]. After handling the singularity, we can eliminate the dis-
placement variable to build an interface equation, or solve the saddle-point system
directly by some preconditioned iterative methods.

A domain decomposition with Lagrange multipliers for solving linear elastic-
ity problems in two dimensions was introduced in [19], in which inexact solvers
were considered. A recent work on mortar discretization with geometrically non-
conforming partitions for solving linear elasticity problems is a FETI-DP algorithm
designed in [18]. To resolve the singularity associated with the displacement vari-
able, a certain set of primal constraints was selected in [18] from the subdomain
faces by some rules. After building the saddle-point system, Schur complement
system was first got by eliminating the interior displacement variables in every
subdomain, then an interface equation of the Lagrange multiplier was obtained by
eliminating the primal constraint unknowns. Similar to other FETI-DP algorithms,
a Neumann-Dirichlet preconditioner was constructed for the interface equation.

In the present paper, we study DDM with Lagrange multipliers for solving three-
dimensional linear elasticity problems with jump coefficients. As in [15] (for Laplace
equations), we propose a special augmented method to handle the singularity of the
floating subdomains without introducing any additional constraints. But, we here
introduce a different augmented term from the one considered in [15], since the
original augmented term seems inefficient to elasticity problems. Since no inter-
face equation needs to be built in the method, inexact solvers can be applied to
both the primal operator and the Schur complement operator. For our method,
we design a small coarse problem with the degree of freedoms equaling six times
the number of the floating subdomains. We notice that the elasticity operator is
spectrally equivalent to Laplace operator in every subdomain, then any existing
preconditioner for the vector Laplace operator can be used directly as an inexact
solver for the underlying operator. We show that the global preconditioned system
has a nearly optimal condition number, which is independent of the large variations
of the material parameters across the local interfaces.

The outline of the reminder of the paper is as follows. We introduce a new aug-
mented saddle-point problem in section 2. In section 3, we construct two precon-
ditioners for the saddle-point system and give a convergence of the preconditioned
system. The main results of the paper will be shown in section 4. In section 5, we
describe a class of cheap local solvers. Finally, we report some numerical results in
section 6.

2. Linear elasticity and domain decomposition

In this section, we introduce a variational problem arising from the displacement
formulation of compressible linear elasticity, and describe a discretization based on
geometrically non-conforming domain decompositions.

2.1. The model problem. The unknown in the equations of linear elasticity
is the displacement of a linear elastic material under the actions of external and
internal forces. We denote the elastic body by Ω ⊂ R

3, and its boundary by ∂Ω.
We assume that one part of the boundary Γ0, is clamped, i.e. with homogeneous
Dirichlet boundary conditions, and that the rest, Γ1 := ∂Ω\Γ0, is subject to a
surface force g, i.e. a natural boundary condition. We can also introduce an
internal volume force f, e.g. gravity. The differential formulation is as follows (i=1,


