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COMPARISON OF A SPECTRAL COLLOCATION METHOD

AND SYMPLECTIC METHODS FOR HAMILTONIAN SYSTEMS

NAIRAT KANYAMEE AND ZHIMIN ZHANG

Abstract. We conduct a systematic comparison of a spectral collocation

method with some symplectic methods in solving Hamiltonian dynamical sys-

tems. Our main emphasis is on non-linear problems. Numerical evidence has

demonstrated that the proposed spectral collocation method preserves both

energy and symplectic structure up to the machine error in each time (large)

step, and therefore has a better long time behavior.
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1. Introduction

Hamiltonian systems typically arise as models of conservative physical systems
and have many applications in classical mechanics, molecular dynamics, hydrody-
namics, electrodynamics, plasma physics, relativity, astronomy, and other scientific
fields [29, 30]. They are an alternative and equivalent formalism of Newtonian and
Lagrangian formalisms and become one of the most useful tools in the mathemati-
cal theory of physical and engineering sciences. Almost all real physical processes
with negligible dissipation can be described in some way or another by Hamiltonian
formalism [1].

The canonical system

(1)
dpi
dt

= −∂H

∂qi
,

dqi
dt

=
∂H

∂pi
; i = 1, 2, . . . , n

with given Hamiltonian function H(p1, . . . , pn; q1, . . . , qn) was first introduced by
Hamilton in 1824. Since then, many famous scientists, such as Poincaré, Jacobi,
Birkhoff, Weyl, Kolmogorov, and Arnold, studied the subject [1].

In addition to its elegance and symmetry, the Hamiltonian system has some
remarkable properties, most important among which are its symplectic structure
and optimality for energy preservation. Any good numerical scheme should be
able to replicate as many of these physical properties as possible. The symplectic
structure is in nature volume-preserving. Traditional ODE solvers such as Runge-
Kutta, multi-step methods usually do not preserve the symplectic structure and
energy, and as a consequence, numerical trajectories tend to gradually drift away
from the true solution trajectories in a phenomenon called phase shift. The idea
of developing numerical methods that maintain the symplectic structure was first
studied in a general setting by Feng in the 1980’ [10]. This was followed by a
successful systematic study of designing so-called symplectic algorithms [11, 12,
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13, 14, 15, 16, 17, 26, 33]. But, none of these symplectic algorithms is energy-
preserving in general. Indeed, it was proved that there exists no energy preserving
symplectic algorithm for general non-linear Hamiltonian systems [19, 9]. On the
other hand, Galerkin type methods such as finite element methods are well-known
to preserve energy. Now we face a dilemma and have to choose between preserving
energy and preserving symplectic structure. Some argue that for highly oscillatory
problems, preserving energy may be more important than the symplectic structure
[7, 8, 32, 4, 18].

In this paper, we introduce an algorithm based on spectral collocation to pre-
serve both energy and volume (symplectic structure) up to numerically negligible
error terms. If the error term is so small that it reaches the machine epsilon –
the computer round-off error, then the algorithm is practically energy and volume
preserving. We shall use a series numerical benchmark problems to demonstrate
that our methods are effective and much accurate than symplectic methods with
the similar computational cost.

There have been some recent attempts in using spectral method [35] and spectral
collocation method [22] to solve ODEs. In this work, we carry on a systematic com-
parison between the proposed spectral collocation method and symplectic methods.
For more references regarding spectral and spectral collocation methods, the reader
is referred to [2, 3, 5, 6, 20, 21, 27, 31, 34, 37] and references therein.

2. The algorithm

To simplify the discussion, we use the case n = 1 in (1) to illustrate the idea.
Consider the nonlinear Hamiltonian system

p′ = −∂H

∂q
= f(p, q), q′ =

∂H

∂p
= g(p, q), p(0) = p0, q(0) = q0,

where f and q are nonlinear functions. We use either the Chebyshev-Gauss-Lobatto
or the Legendre-Gauss-Lobatto collocation methods to solve it. We solve the system
on [0, r] first, then use the obtained values (p(r), q(r)) as an initial condition to
repeat the process on [r, 2r], and so on .... Here r could be large, a convenient
choice is r = 2.

Let t0 < t1 < · · · tN be collocation points where t0 = 0 and tN = r. We
interpolate p and q as

pN(t) =
N
∑

j=0

p(tj)ℓj(t), qN (t) =
N
∑

j=0

q(tj)ℓj(t),

where ℓj is the Lagrange nodal basis function satisfying ℓj(ti) = δij .
We are seeking numerical approximations of (p(tj), q(tj)), denoted as (pj , qj). In

the literature of the spectral method, the explicit form of the differentiation matrix
D = (dij)

N
i,j=0 is known [2, 3, 5, 6, 21, 34] with dij = ℓ′j(ti). Note that the rank of

the (N + 1)× (N + 1) matrix D is N . Therefore, we may solve the system

d11p1 + d12p2 + · · · d1NpN = f(p1, q1)− d10p0
...

dN1p1 + dN2p2 + · · · dNNpN = f(pN , qN )− dN0p0

d11q1 + d12q2 + · · · d1NqN = g(p1, q1)− d10q0
...

dN1q1 + dN2q2 + · · · dNNqN = g(pN , qN )− dN0q0


