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CONVERGENCE AND STABILITY OF THE SEMI-IMPLICIT

EULER METHOD WITH VARIABLE STEPSIZE FOR A LINEAR

STOCHASTIC PANTOGRAPH DIFFERENTIAL EQUATION
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Abstract. The paper deals with convergence and stability of the semi-

implicit Euler method with variable stepsize for a linear stochastic pantograph

differential equation(SPDE). It is proved that the semi-implicit Euler method

with variable stepsize is convergent with strong order p = 1
2
. The conditions

under which the method is mean square stability are determined and the

numerical experiments are given.
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1. Introduction

The importance of stochastic differential delay equations (SDDEs) derives
from the fact that many of the phenomena witnessed around us do not have an
immediate effect from the moment of their occurrence. A patient, for example,
shows symptoms of an illness days (or even weeks) after the day in which he or
she was infected. In general, we can find many ”systems”, in almost any area
of science (medicine, physics, ecology, economics, etc.), for which the principle of
causality, i.e., the future state of a system is independent of the past states and
is determined solely by the present, does not apply. In order to incorporate this
time lag (between the moment an action takes place and the moment its effect is
observed) to our models, it is necessary to include an extra term which is called
time delay. The SDDEs can be regarded as a generalization of stochastic differential
equations (SDEs) and delay differential equations (DDEs). During the last few
decades, many authors have studied SDDEs. some important results are given, for
example, conditions which guarantee the existence and uniqueness of an analytical
solution [13, 14, 15] and stability conditions for both exact solutions and numerical
solutions, etc. [2, 6, 11, 16].

It is well known that in the deterministic situation there is a very special delay
differential equation: the pantograph equation

(1.1)
y′(t) = āy(t) + b̄y(qt), 0 6 t 6 tf ,

y(0) = y0.

where q ∈ (0, 1). It arises in quite different fields of pure and applied mathematics
such as number theory, dynamical systems, probability, quantum mechanics and
electrodynamics. In particular, it is used by Ockendon and Taylor[17] to study
how the electric current is collected by the pantograph of an electric locomotive,
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from where it gets its name. In [17] the coefficients ā, b̄ of Eq.(1.1) are constants.
If we take into account the estimation error for system parameters as well as the
environmental noise, it is better to estimate parameters ā, b̄ as point estimator plus
an error. By the central limit theorem, the error may be described by a normally
distributed random variable. Then, Eq.(1.1) becomes the differential form

(1.2)
dX(t) = [aX(t) + bX(qt)]dt+ [cX(t) + dX(qt)]dW (t), t > 0,

X(0) = x0,

which is a linear stochastic pantograph differential equation. In Eq.(1.2), a, b, c,
d ∈ R, q ∈ (0, 1), W (t) is a one-dimensional standard wiener process. The initial
value x0 is a real -valued random variable. The first term on the right hand side
of Eq.(1.2) is usually called the drift function and the second term is called the
diffusion function. The integral version of equation (1.2) is given by

X(t) = x0 +

∫ t

0

[aX(s) + bX(qs)]ds

+

∫ t

0

[cX(s) + dX(qs)]dW (s),

(1.3)

for t > 0. The second integral in Eq.(1.3) is a stochastic integral which is to be
interpreted as the Itô sense [5].

The study for stochastic pantograph equation has just begun. Baker and Buck-
war [3] give the necessary analytical theory for existence and uniqueness of a strong
solution of the linear stochastic pantograph equation

(1.4)
dX(t) = [aX(t) + bX(qt)]dt+ [σ1 + σ2X(t) + σ3X(qt)]dW (t),

X(0) = X0.

They also prove that the numerical solution produced by the continuous θ-method
converges to the true solution with order 1/2. Liu et al. [12] give stability con-
ditions of the analytical solution of the nonlinear stochastic pantograph equation
and provide results concerning convergence and stability of the semi-implicit Euler
method with constant stepsize. Fan [4] give the sufficient conditions that guarantee
the existence and uniqueness of a strong solution to the nonlinear stochastic pan-
tograph equation and proved that the semi-implicit Euler method with constant
stepsize applied to the nonlinear equation has strong order 1/2.

When the numerical method with a constant stepsize is applied to the pantograph
equation, the most difficult problem is the limited computer memory as shown
in [9, 10]. In this paper, we use the semi-implicit Euler method with variable
stepsize for a scalar test equation (1.2) to avoid the storage problem and discuss the
convergence and stability properties of the method. The other reason of applying a
numerical method with a variable stepsize is that when using the numerical method
with a constant stepsize to Eq. (1.2), the resulting difference equation is not of fixed
order.

The paper is organized as follows. In Section 2, we will introduce some notations
and recall some properties of its analytical solution. In Section 3, we will prove that
the semi-implicit Euler method with a variable stepsize is convergent to the true

solution with order 1
2 and mean-square stability if θ ∈

( |a|+|b|
2|a| , 1

]

. We will provide

some numerical examples in Section 4.


