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ELEMENT-BY-ELEMENT POST-PROCESSING OF

DISCONTINUOUS GALERKIN METHODS FOR NAGHDI

ARCHES

FATIH CELIKER, LI FAN, AND ZHIMIN ZHANG

Abstract. In this paper, we consider discontinuous Galerkin approximations to the solution of
Naghdi arches and show how to post-process them in an element-by-element fashion to obtain a

far better approximation. Indeed, we prove that, if polynomials of degree k are used, the post-

processed approximation converges with order 2k+1 in the L2-norm throughout the domain. This
has to be contrasted with the fact that before post-processing, the approximation converges with

order k + 1 only. Moreover, we show that this superconvergence property does not deteriorate as

the thickness of the arch becomes extremely small. Numerical experiments verifying the above-
mentioned theoretical results are displayed.
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1. Introduction

In [5], a family of discontinuous Galerkin (DG) methods for a Naghdi-type arch
model was introduced as a step towards the difficult goal of devising locking-free
DG methods for shells. They have proved that the approximation converges with
order k + 1 when polynomials of degree k are used. In this paper, we construct an
element-by-element post-processing that converges remarkably faster.

This post-processing is based on the fact that a superconvergence phenomenon
takes place at the nodes of the mesh. Indeed, the numerical traces of the DG
method converge to the nodal values of the exact solution with order 2k + 1 when
polynomials of degree k are used to compute the DG approximation, see [5]. The
main goal of this paper is to exploit this phenomenon to post-process the DG
solution element-by-element and obtain a better solution which superconverges to
the exact solution with order 2k+ 1 in the L2-norm throughout the domain rather
than at merely some isolated points of the mesh.

A similar superconvergent post-processing result has been proved for DG meth-
ods for convection-diffusion problems in [3]. Based on the superconvergence result
proved therein, Cockburn and Ichikawa [7] devised a post-processing for the ap-
proximation of linear functionals which is superconvergent of order 4k + 1. In [2]
Celiker and Cockburn designed a post-processing for DG methods for Timoshenko
beams which is superconvergent of order 2k + 1 in the L∞-norm throughout the
computational domain. This result was based on the numerical observation that the
numerical traces of the DG approximation for Timoshenko beams are also supercon-
vergent of order 2k+1 at the nodes of the mesh. Shortly later, the superconvergence
of the numerical traces was put on a firm mathematical ground in [4].

As we will describe below, the Timoshenko beam model can be viewed as a
special case of the Naghdi arch model where the beam is considered as an arch
with zero curvature. The post-processing we display in this paper is thus inspired
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by the one introduced in [2]. Despite this close similarity, the coupling of some of
the unknowns in the Naghdi arch model renders both the post-processing and its
error analysis more involved. This is especially the case for the latter because it
requires the analysis of a linear system of initial value problems whose solution is
approximated by using approximate data. This is the main reason why we prove
an L2-error estimate for the post-processed approximation unlike the L∞-error
estimate for the Timoshenko beam post-processing. Notwithstanding, it is possible
to prove an L∞-error estimate at the expense of requiring high order regularity,
following, for example, [11, 17].

Next, we describe the Naghdi arch model . A dimensionless form of this model
can be written as a system of first order differential equations:

w′ + θ + κu = d2T,(1a)

u′ − κw = d2N,(1b)

θ′ + κ(u′ − κw) = M,(1c)

M ′ = T,(1d)

N ′ + (κM)′ − κT = p,(1e)

T ′ + κ2M + κN = q,(1f)

defined on Ω = (0, 1). For the simplicity of our notation we have assumed that the
model is non-dimensionalized in a way that all the material properties including the
Young’s modulus, shear modulus, moment of inertia, and the length of the arch are
scaled to be equal to one. However, all the results in this paper can be generalized
to the case in which they are non-constant functions. The small parameter d > 0
represents the dimensionless thickness of the arch. The function κ is x-dependent,
and κ(x) is the curvature of the middle curve of the arch at the point of coordinate x.
When κ is constantly valued, the arch is circular. A straight beam could be viewed
as a special arch with κ ≡ 0, in which case (1) decouples to the Timoshenko beam
bending model. The functions p and q are the tangential and transverse resultant
loads, respectively. Similarly, a displacement vector of a point of the middle curve is
decomposed to its tangent component u and normal component w. The remaining
unknowns are the rotation of the normal fibers, θ, the bending moment, M , the
scaled membrane stress, N , and the scaled shear stress, T . In Figure 1 we display
some of the characteristics of a typical arch. The parametrization is indicated by
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Figure 1. Cross section of a two-end clamped arch and arc length parame-

terization of its middle curve

You could cide the figure by Figure 1. Note that the label is in the caption.

The parameterization is indicated by the mapping that maps P ∈ [0, 1] to P ′ on the middle

curve. The x coordinate of P is equal to the arc length of the portion of the middle curve

from its left end to P ′. A resultant force vector is decomposed to its tangent component p

and normal component q. Similarly, a displacement vector of a point of the middle curve is

decomposed to its tangent component u and normal component w.

Notes by Sheng Zhang.
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Figure 1. Cross section of an arch clamped at both ends, and arc
length parametrization of its middle curve.


