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STABILITY OF TWO TIME-INTEGRATORS FOR THE

ALIEV-PANFILOV SYSTEM

MONICA HANSLIEN, ROBERT ARTEBRANT, ASLAK TVEITO, GLENN TERJE LINES,
AND XING CAI

Abstract. We propose a second-order accurate method for computing the

solutions to the Aliev-Panfilov model of cardiac excitation. This two-variable

reaction-diffusion system is due to its simplicity a popular choice for model-

ing important problems in electrocardiology; e.g. cardiac arrhythmias. The

solutions might be very complicated in structure, and hence highly resolved

numerical simulations are called for to capture the fine details. Usually the for-

ward Euler time-integrator is applied in these computations; it is very simple

to implement and can be effective for coarse grids. For fine-scale simulations,

however, the forward Euler method suffers from a severe time-step restriction,

rendering it less efficient for simulations where high resolution and accuracy

are important.

We analyze the stability of the proposed second-order method and the forward

Euler scheme when applied to the Aliev-Panfilov model. Compared to the Eu-

ler method the suggested scheme has a much weaker time-step restriction, and

promises to be more efficient for computations on finer meshes.
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1. Introduction

Pulse propagation in cardiac tissue can adequately be simulated by the use of
modern ionic models with diffusive coupling between myocytes. Today’s detailed
ionic models, however, consist of dozens of ODEs that represent a great numerical
challenge to solve at every mesh point for large spatial domains. Such large spatial
regions are relevant for the study of for example re-entrant cardiac arrhythmias. If
in addition a high spatial resolution is required, it may not be feasible to solve these
models on present day computers. The Aliev-Panfilov model [1] was constructed
to ameliorate this problem and capture the qualitative behavior of the cardiac
tissue in a mathematically and computationally tractable model. It builds upon
the FitzHugh-Nagumo model [8, 15] and retains its simplicity while more accurately
describing the pulse propagation in collections of heart cells. The Aliev-Panfilov
model has been applied in many computationally demanding problems; e.g. spiral
wave breakup in coupled cells [17, 23], scroll waves in excitable medium [20].

The bidomain and monodomain models [10, 11, 22] are commonly used to de-
scribe the electrical activity in the heart at tissue level. Mathematically, these
models are partial differential equations of reaction-diffusion type. Two electri-
cal potentials, the transmembrane and the extracellular, are accounted for in the
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bidomain model. A simplifying assumption reduces the bidomain description to
the monodomain model, which only models the transmembrane potential. We will
consider the monodomain model description of cardiac tissue with Aliev-Panfilov
cell dynamics: On the space-time domain ΩT := Ω×(0, T ] the Aliev-Panfilov model
reads

∂e

∂t
= δ∇2e− ke(e− a)(e − 1)− er, on ΩT ,(1)

∂r

∂t
= −

[

ε+
µ1r

µ2 + e

]

[r + ke(e− b− 1)], on ΩT ,(2)

and

~n · δ∇e = 0 on ∂Ω, and (e, r)t=0 = (e(0, ·), r(0, ·)),(3)

where ~n is the outer normal vector of the boundary ∂Ω. Here e represents the scaled
transmembrane potential, r is the variable responsible for recovery of the tissue and
Ω is a two-dimensional domain in the present paper. For the stability analysis of the
time-integrators in this paper we will assume that the Aliev-Panfilov parameters
µ1, µ2, k, ε, b, a and δ are positive. Numerical experiments will be performed in
order to investigate the sharpness of the obtained time step restrictions. For these
computations we will fix the parameters to the physiological values µ1 = 0.07,
µ2 = 0.3, k = 8, ε = 0.01, b = 0.1, a = 0.1 and δ = 5× 10−5.

A variety of schemes has been applied in numerical electrophysiology. In [4] a
finite volume scheme, with explicit Euler time-stepping, for the monodomain model
in connection with Aliev-Panfilov or FitzHugh-Nagumo cell kinetics was proven to
be first order convergent. Stability properties of several first and second order
accurate time-integrators, and even a third order scheme, for the bidomain model
with FitzHugh-Nagumo dynamics were studied in [7]. Implicit Euler was used in
e.g. [9], where finite element discretization was employed in space. An adaptive
method for the Aliev-Panfilov model was recently presented in [2].

The forward Euler method has, however, emerged as the standard approach to
solve the Aliev-Panfilov system in time; see e.g [23, 19, 14, 13, 20]. Without doubt
this is due to its big advantage of simplicity. Unfortunately, the method becomes
less efficient as the spatial resolution is increased because of its very severe time
step restriction. Numerical computations on highly resolved meshes are relevant
in many important applications; e.g. in fibrillation where a spiral wave pattern
needs to be resolved and we want to capture the fine details. These considerations
motivate us to consider an alternative scheme for fine-scale computations.

We will present a second-order method for the system (1)-(3) and compare it
to the standard forward Euler scheme in terms of stability. The second-order ac-
curate time integration we consider is the Singly Diagonally Implicit Runge-Kutta
(SDIRK) method in [3]. To our knowledge the stability of this method when ap-
plied to the Aliev-Panfilov system has not been analyzed previously and no time
step restriction has been given. We analyze both the forward Euler scheme and
the second-order scheme by giving a maximum principle revealing the time step
condition needed to keep the solution within the physiologically relevant bounds.
The second-order method hinges on a decomposition of the Aliev-Panfilov model
into a PDE and two coupled ODEs by an operator-splitting technique in time. The
second-order accurate SDIRK method is applied to integrate the ODE system in
time. Compared to the forward Euler scheme, we will show that the second-order
method has considerably improved stability properties. Although the proposed
scheme is more computationally costly than the forward Euler method for coarse


