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AN OPTIMAL-ORDER ERROR ESTIMATE FOR AN

H1-GALERKIN MIXED METHOD FOR A PRESSURE

EQUATION IN COMPRESSIBLE POROUS MEDIUM FLOW

HUANZHEN CHEN, ZHAOJIE ZHOU, AND HONG WANG

Abstract. We present an H
1-Galerkin mixed finite element method for the

solution of a nonlinear parabolic pressure equation, which arises in the math-

ematical models for describing a compressible fluid flow process in subsurface

porous media. The method possesses the advantages of mixed finite element

methods while avoiding directly inverting the permeability tensor, which is im-

portant especially in a low permeability zone. We conducted theoretical anal-

ysis to study the existence and uniqueness of the numerical solutions of the

scheme and prove an optimal-order error estimate for the method. Numerical

experiments are performed to justify the theoretical analysis.
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1. Introduction

Mathematical models used to describe compressible fluid flow processes in petroleum
reservoir simulation and groundwater contaminant transport lead to a coupled sys-
tem of time-dependent nonlinear partial differential equations. Let c(x, t) be the
concentration of an invading fluid or a concerned solute or solvent, and let p(x, t)
and u(x, t) be the pressure and Darcy velocity of the fluid mixture. The mass
conservation for the fluid mixture and for the invading fluid as well as Darcy’s law
leads to the following system of partial differential equations [1, 2, 3]

(1.1)
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
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

(a)
∂

∂t
(φρ) +∇ · (ρu) = ρq, x ∈ Ω, t ∈ J,

(b)
∂

∂t
(φρc) +∇ · (ρuc− ρD(x,u)∇c) = c̄ρq, x ∈ Ω, t ∈ J,

(1.2) u = −
K

µ
(∇p− ρg), x ∈ Ω, t ∈ J.

Here Ω ⊂ R
d refers to a porous medium reservoir with the boundary ∂Ω, J = (0, T ]

is the time interval, φ(x) and K(x) are the porosity and the permeability tensor
of the medium, µ and ρ are the viscosity and the density of the fluid mixture,
g reflects the gravitational effect, q(x, t) is the source and sink term. D(x,u) =
φ(x)dm I + dt|u| + (dl − dt)(uiuj)

d
i,j=1/|u| is the diffusion-dispersion tensor, with

Received by the editors August 17, 2009 and, in revised form, November 25, 2009.
2000 Mathematics Subject Classification. 65N15, 65N30.
The work is supported by the National Science Foundation of China under Grant 10971254,

the Natural Science Foundation of Shandong Province under Grant ZR2009AZ003 and Young
Scientists Fund of Shandong Province under Grant 2008BS01008, and the National Science Foun-
dation under Grant No. EAR-0934747 .

132



AN H1-GALERKIN MIXED METHOD FOR POROUS MEDIUM FLOW 133

dm, dt, and dl being the molecular diffusion, the transverse and longitudinal dis-
persivities, respectively, and I is the identity tensor. c̄(x, t) is specified at sources
and c̄(x, t) = c(x, t) at sinks.

In the context of compressible fluid flow process, the first term in (1.1a) does
not vanish. The flow equation in (1.1) can be expressed as a nonlinear parabolic
equation in terms of the pressure p as follows

(1.3) Sp
∂p

∂t
+∇ · (ρu) = ρq.

The variable of primary interest in the mathematical model (1.1)-(1.2) is the con-
centration c in the transport equation in (1.1), which shows the sweeping efficiency
in the enhanced oil recovery in petroleum industry or the extent and location of the
contaminant and the effect of remediation in groundwater contaminant transport
and remediation. Extensive research has been conducted on the numerical methods
and corresponding analysis for the transport equation in (1.1), including (but not
limited to) [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

Nevertheless, an accurate solution of the concentration c requires an accurate
recovery of Darcy velocity u in the flow equation in (1.1) since the advection and
diffusion-dispersion in the transport equation are governed by Darcy velocity. How-
ever, the flow properties of the porous media often change abruptly with sharp
changes in lithology. These sharp changes are accompanied by large changes in
the pressure gradient ∇p which, in a compensatory fashion, yields a smooth Darcy
velocity u [3]. The standard finite difference or finite element methods solve the
pressure equation (1.3) for the pressure p directly, which is not necessarily smooth
due to the rough coefficients in the equation. The pressure p is differentiated and
then multiplied by a possibly rough coefficient K/µ to determine Darcy velocity u

via (1.2). Therefore, the resulting Darcy velocity u is often inaccurate, which then
reduces the accuracy of the approximation to the concentration c in the transport
equation in (1.1).

The mixed finite element method approximates both the pressure p and Darcy
velocity u from a flow or pressure equation in (1.1) simultaneously, yielding an
accurate Darcy velocity u [3, 26, 27, 28]. This is why the mixed method has been
used widely in the numerical simulation of porous medium flow, including both in-
compressible flow [18, 19, 20, 21, 22, 23, 24] and compressible flow [5, 6, 25]. In the
mixed formulation, Darcy’s law (1.2) is rewritten as µK−1u = ∇p and then com-
bined with the flow equation in (1.1) to form a saddle-point problem. Consequently,
the mixed formulation could face numerical difficulties in a low permeability zone
due to the inversion K−1.

In this paper we continue our previous work in [41] and develop a fully discrete
H1-Galerkin mixed finite element method which combines the H1-Galerkin formu-
lation [29, 30] and the expanded mixed finite element method [31]. This would
solve for the pressure p, its gradient σ = ∇p and Darcy velocity u = (K/µ)∇p
directly, and thus avoids invert K explicitly. Furthermore, this formulation permits
the use of standard continuous and piecewise (linear or higher-order) polynomials in
contrast to continuously differentiable piecewise polynomials required by standard
H1-Galerkin method [29, 30], and is free of LBB condition as required by the mixed
finite element method. An optimal error estimate for fully discrete approximation
was proved under milder regularity assumptions and the CFL condition. Numerical
tests are performed to confirm the theoretical analysis. There have been works in
the literature on the development and analysis H1-Galerkin mixed finite element


