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A POSTERIORI ERROR ESTIMATE FOR STABILIZED FINITE

ELEMENT METHODS FOR THE STOKES EQUATIONS

JUNPING WANG, YANQIU WANG, AND XIU YE

Abstract. Computation with adaptive grid refinement has proved to be a

useful and efficient tool in scientific computing over the last several decades.

The key behind this technique is the design of a good a posterior error esti-

mator that provides a guidance on how and where grids should be refined. In

this paper, the authors propose and analyze a posteriori error estimator for a

stabilized finite element method in computational fluid dynamics. The main

contributions of the paper are: (1) an efficient a posteriori error estimator is

designed and analyzed for a general stabilized finite element method, (2) a rig-

orous mathematical analysis is established for a theoretical justification of its

efficiency and generality to other applications, and (3) some computational re-

sults with a comparison with other methods are presented for a computational

justification of the proposed a posteriori error estimator.
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1. Introduction

Computation with adaptive grid refinement has proved to be a useful and efficient
tool in scientific computing over the last several decades. The key behind this
technique is the design of a good posteriori error estimator that provides a guidance
on how and where grids should be refined. The goal of this manuscript is to propose
and analyze a posteriori error estimator for a stabilized finite element method in
computational fluid dynamics.

As was well-known in the analysis and employment of finite element methods in
solving the Navier-Stokes equations, the inf-sup condition [3] has played an impor-
tant role because it ensures a stability and accuracy of the underlying numerical
schemes. A pair of finite element spaces that are used to approximate the velocity
and the pressure unknowns are said to be stable if they satisfy the inf-sup condi-
tion. Intuitively speaking, the inf-sup condition is a measure that enforces a certain
correlation between two finite element spaces so that they both have the required
properties when employed for approximating the Navier-Stokes equations. It is well
known that the two simplest elements P1/P0 (i.e., linear/constant) on triangle and
Q1/P0 (i.e., bilinear/constant) on quadrilateral do not satisfy the inf-sup condition.
Furthermore, they are known to be not stable, and therefore can not be trusted
when employed in practical computation. In contrast, most known stable elements
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do not seem to be natural because their construction involves non-standard func-
tions or polynomials which are not commonly used/implemented in popular engi-
neering code packages. To eliminate the constraint of the inf-sup condition so that
natural finite element spaces can be used, several stabilized finite element methods
have been developed for the Stokes equations in the last two decades [12, 4, 13, 8].
These methods are gaining more and more popularity in computational fluid dy-
namics, and this paper is focused on a further study of them.

For simplicity, the study shall be conducted for the incompressible Stokes equa-
tion for which the stabilized method as proposed in [8] is employed. The main
contributions of this paper are: (1) an efficient a posteriori error estimator is de-
signed and analyzed for the said stabilized finite element method, (2) a rigorous
mathematical analysis is established for a theoretical justification of its efficiency
and generality to other model equations, and (3) some computational results with
a comparison with other methods are presented for a computational justification of
the proposed a priori error estimator.

It should be pointed out that a posteriori error estimators for the P1/P0 stabilized
finite element methods have been studied by Kay and Silvester [14]. The error
estimators as proposed in [14] are of residual type which is strongly related to the
a priori error estimator to be presented in this paper. However, the result of this
paper applies to finite elements of arbitrary order, and the grid refinement strategies
are different from that of [14].

The research of one of the authors was heavily influenced by his connection
with Dr. Richard Ewing, particularly in the area of fluid dynamics and grid local
refinement techniques for finite element methods. In fact, the first time when
this author learnt “grid local refinement” was through a lecture presented by Dr.
Ewing in 1987 at the Institute of Mathematics and Its Applications, University of
Minnesota. Dr. Ewing had been a long time advocator for promoting the use and
research of grid local refinements in scientific computing. This paper was written
in the memory of Dr. Ewing for his scientific stimulation and vision in the research
of computational mathematics.

The paper is organized as follows. In Section 2, we review some notations and
outline a stabilized finite element formulation for the Stokes equations. In Section
3, a posteriori error estimator is given and a theoretical justification for its relia-
bility and efficiency is established. Finally in Section 4, we present some numerical
experiments for three test problems with two different refinement strategies.

2. Preliminaries and the stabilized finite element method

For simplicity, we consider the homogeneous Dirichlet boundary value problem
for the Stokes equations. This model problem seeks unknown functions u ∈ H1(Ω)d

and p ∈ L2(Ω) satisfying

−ν∆u+∇p = f in Ω,(1)

∇ · u = 0 in Ω,(2)

u = 0 on ∂Ω,(3)

where Ω is an open bounded domain in the Euclidean spaceRd(d = 2, 3) with a Lip-
schitz continuous boundary ∂Ω; f is a given function in H−1(Ω)d; ∆, ∇, and ∇· de-
note the Laplacian, gradient, and divergence operators respectively; ν > 0 is a given
constant representing the viscosity of the fluid. The given function/distribution
f = f(x) is the unit external volumetric force acting on the fluid at x ∈ Ω. Without


