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ADVECTION-DIFFUSION EQUATIONS WITH INTERFACES

KAIXIN WANG, HONG WANG, AND XIJUN YU

Abstract. We develop and analyze an immersed Eulerian-Lagrangian local-

ized adjoint method (ImELLAM) for transient advection-diffusion equations

with interfaces. The derived method possesses the combined advantages of the

immersed finite element method and the Eulerian-Lagrangian method.
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1. Introduction

Transient advection-diffusion equations arise in mathematical models for de-
scribing petroleum reservoir simulation, groundwater contaminant transport, ge-
ological storage of carbon dioxide and remediation, and many other applications
[1, 13, 2, 7, 12, 13, 14, 20]. These equations admit solutions with moving steep
fronts and complicated structures. Furthermore, subsurface porous medium ma-
trix often contains a variety of faults and fractures of different magnitude. Those
relatively large faults must be accurately incorporated into the corresponding math-
ematical models, in which the geological formations consist of several subdomains
with different geological properties and salient physical interfaces. This also means
that in the numerical discretization the computational meshes must align with the
large faults in order to obtain a stable and accurate numerical solution. Note that
the number of large faults is usually quite limited, so the modeling and numerical
implementation is doable. On the other hand, there are numerous relatively small
fractures which are very difficult, if not impossible at all, to describe in a deter-
ministic manner geologically. As a matter of fact, these relatively tiny fractures
are often described in a probability sense. The impact of these tiny fractures can
be handled via the approach of upscaling or multiscale numerical techniques. As
for those intermediate fractures, they are probably too big to be upscaled into the
underlying numerical schemes in any reasonable manner. On the other hand, there
are probably too many intermediate fractures such that the computational meshes
of the underlying numerical scheme align with each of them. Based on these con-
siderations we plan to adopt the approach of immersed numerical method to handle
these intermediate fractures.

To expose the idea, in this paper we consider the one-dimensional transient linear
advection-diffusion equation with interfaces

(1)
φut + (V u−Dux)x = f(x, t), x ∈ (a, b), 0 < t ≤ T,

u(x, 0) = u0(x), x ∈ [a, b].
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In such areas as porous medium flow and transport, the geological formations may
consist of several subdomains with different geological properties. Consequently,
there exist physical interfaces between different subdomains. Across these inter-
faces, the concentration u(x, t) and the Darcy flux V (x) are continuous, but the
porosity of the porous medium φ(x) and the diffusion coefficient D(x) are discon-
tinuous. Nevertheless, the diffusive flux is continuous across these interfaces. We
assume that V is constant in the domain (a, b), φ and D are piecewise constants
and a < α1 < · · · < αK < b are the interfaces. This leads to the following interface
conditions for k = 1, · · · ,K,

(2) [[u]](αk, t) = 0, [[Dux]](αk, t) = 0, t ∈ [0, T ],

where [[u]](αk, t) = u(α+
k , t) − u(α−

k , t) represents the jump of u across the inter-
face x = αk. To focus on main idea for the development and the analysis of the
ImELLAM scheme, we assume that the problem is closed by the periodic boundary
condition.

In this paper we develop and analyze an immersed Eulerian-Lagrangian local-
ized adjoint method (ImELLAM) for transient advection-diffusion equations with
interfaces. The rest of the paper is organized as follows: In §2 we present some
preliminaries that are needed in the development and analysis of the ImELLAM
scheme. In §3 we derive the ImELLAM scheme. In §4 we prove an optimal-order
error estimate for the ImELLAM scheme. §5 contains concluding remarks.

2. Preliminary

In this section we recall some preliminaries that are needed in the development
and analysis of the ImELLAM scheme.

2.1. Sobolev Spaces. Let W k
p (a, b) consist of functions whose weak derivatives

up to order-k are p-th Lebesgue integrable in (a, b), and Hk(a, b) := W k
2 (a, b). Let

Hm
E (a, b) be the subspace of Hm(a, b) with periodic boundary condition. For any

Banach space X , we introduce Sobolev spaces involving time [6]
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We also introduce piecewise-smooth Sobolev spaces incorporated with certain
continuity conditions and the corresponding norms for the immersed finite element
method [10, 15]

PW k
p (a, b) :=

{

v : v|(αk−1,αk) ∈ W k
p (αk−1, αk), k = 1, · · · ,K + 1

}

,

PH2
int(a, b) :=

{

v : v ∈ C(a, b), v|(αk−1,αk) ∈ H2(αk−1, αk),

[[Dvx]](αk) = 0, k = 1, · · · ,K + 1
}

.


