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NUMERICAL SOLUTIONS FOR NONEQUILIBRIUM SOLUTE

TRANSPORT WITH FIRST-ORDER DECAY AND

ZERO-ORDER PRODUCTION

MING CUI∗ AND YAZHU DENG

Abstract. Solute transport in the subsurface is often considered to be a nonequilibrium pro-
cess. Nonequilibrium during transport of solutes in porous medium has been categorized as either
transport-related or sorption-related. For steady state flow in a homogeneous soil and assuming a
linear sorption process, we will consider advection-diffusion adsorption equations. In this paper,
numerical methods are considered for the mathematical model for steady state flow in a homoge-
neous soil with a linear sorption process. The modified upwind finite difference method is adopted
to approximate the concentration in mobile regions and immobile regions. Optimal order l2- error
estimate is derived. Numerical results are supplied to justify the theoretical work.
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1. Introduction

Solute transport in the subsurface is often considered to be a nonequilibrium pro-
cess. Nonequilibrium during transport of solutes in porous medium has been cat-
egorized as either transport-related or sorption-related. Transport nonequilibrium
(also called physical nonequilibrium) is caused by slow diffusion between mobile
and immobile water regions. These regions are commonly observed in aggregated
soils [8, 12] or under unsaturated flow conditions [2, 13, 14, 15], or in layered or
otherwise heterogeneous groundwater systems. Sorption-related nonequilibrium re-
sults from either slow intrasorbent diffusion [1] or slow chemical interaction [7]. In
most of these models, the soil matrix is conceptually divided into two types of sites;
sorption is assumed to be instantaneous for one type and rate-limited for the other
type.

Solute transfer between immobile/mobile water regions or instantaneous/ rate-
limited sorption sites is commonly described by a first-order rate expression or by
Fica’s law if the geometry of the porous matrix can be specified. Models that
are based on well-defined geometry are difficult to apply to actual field situations,
they require information about the geometry of the structural units that are rarely
available [6]. Hence, the first-order rate formulation has been extensively used to
model underground contaminant transport. We start with a brief outline of two-site
nonequilibrium models as well as the two-region physical nonequilibrium models
which were given in [16]. General solutions are derived for the volume-averaged
solute concentration using Laplace transforms in [16].

Model

(1) Two-site Nonequilibrium Transport Model
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The two-site sorption model makes a distinction between type-1 (equilibrium)
and type-2 (first-order kinetic) sorption sites [9] and is given by
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where c is the volume-averaged concentration of the liquid phase; s is the con-
centration of the sorbed phase; D is the dispersion coefficient; θ is the volumetric
water content; v = q/θ is the average pore water velocity in which q is the vol-
umetric water flux density; ρ is the bulk density; µl and µs are first-order decay
coefficients for degradation in the liquid and sorbed phases, respectively; γl and γs
are zero-order production terms for the liquid and sorbed phase, respectively; k is a
distribution coefficient for linear sorption; α is a first-order kinetic rate coefficient;
f is the fraction of exchange sites assumed to be at equilibrium; x is distance; t
is time; and the subscripts e and k refer to equilibrium and kinetic sorption sites,
respectively.

(2) Two-Region Nonequilibrium Transport Model
The two-region transport model assumes that the liquid phase can be partitioned

into mobile (flowing) and immobile (stagnant) regions and that solute exchange
between the two liquid regions can be modeled as a first-order process. The model
is given by
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where the subscripts m and im refer to mobile and immobile liquid regions, respec-
tively; the subscripts l and s refer to the liquid and sorbed phases, respectively;
f represents the fraction of sorption sites that equilibrates with the mobile liquid
phase and α is a first-order mass transfer coefficient governing the rate of solute
exchange between mobile and immobile liquid regions. Note that θ is equal to
θm + θim.

If we employ dimensionless parameters listed in Table 1, equations (1), (2) and
(3), (4) reduce to the same dimensionless form. Dimensionless equations of the
nonequilibrium model for the case of linear sorption are given by
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