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PARALLEL DATA PARTITIONING STRATEGY IN SOLVING

LARGE SCALE ELECTROMAGNETIC SCATTERING

PROBLEMS

YUE HU, WEIQIN TONG, XINGANG WANG, AND XIAOLI ZHI

Abstract. The multilevel fast multipole algorithm (MLFMA) has shown great efficiency in

solving large scale electromagnetic scattering problems. However, when unknowns become up to
tens of millions, it is not trivial to keep high performance because of the complicated structure

and calculation of MLFMA. In order to get rid of the bottleneck caused by load balancing, a

parallel data partitioning strategy is proposed based on the hierarchical structure of an oct-tree
of MLFMA. We present our data partitioning strategy in the light of different layers’ properties

including the processing of three kinds of layers in the tree and a fine-grained decomposition.

We also put forward a solution of a coexisting data correlating problem, using a transition layer.
Meanwhile, with the purpose of minimizing communication time in distributed memory system, a

redundant technique is applied in the distributed layer. Parallel efficiency analysis demonstrates

that the computational cost in parallelization of MLFMA can be asymptotically cut, and a high
parallel efficiency can be obtained in our implementation.
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1. Introduction

To achieve the fast computing characteristic of large scale electromagnetic prob-
lems, the Multilevel Fast Multipole Method (MLFMA) is applied, as well as Message
Passing Interface (MPI) for network communications among processors. MLFMA
was optimized by Song and Chew [1] in 1995, which has been widely used in re-
cent years. Song and Chew implemented the MLFMA with O(NlogN) complexity,
where N is the number of unknowns, and the memory requirement using translation,
interpolation, anterpolation (adjoint interpolation), and a grid-tree data structure.

For the actual demand, we hope to develop a program to solute a full-sized
aircraft problem that could run concurrently from single workstations to network-
linked clusters. For the sake of a full-sized airplane, unknowns could be up to tens
of millions. Although MLFMA has shown its high performance in reducing the
computational complexity and the memory complexity of Matrix Vector Multipli-
cations (MVMs) from O(N2) to O(NlogN) , when N extends to millions, several
encumbrances have to be faced. And simple parallelization strategies usually fail to
provide efficient solutions, owing to massive communications, poor load-balancing
and necessary duplications. Advanced parallelization techniques have been pro-
posed to improve the parallelization of MLFMA by using preconditioning strategies
[2], extensively investigate the parallelization of MLFMA, identify the bottlenecks
and provide remedial procedures [3], and even a novel method called nondirective
stable plane wave multilevel fast multipole algorithm is developed to evaluate the
low-frequency interactions which cannot be managed by MLFMA [4]. Especially

Received by the editors November 9, 2009 and, in revised form, June 21, 2010.

2000 Mathematics Subject Classification. 35R35, 49J40, 60G40.
This research was supported by Aviation Industry Information Center of China (No.J50103),

and the Graduate Innovation Fund of Shanghai University, Shanghai Leading Academic Discipline

Project (No.SHUCX101062).
257



258 Y. HU, W. TONG, X. WANG, AND X. ZHI

after answered the question that whether 10 million is big [5], Velamparambil and
Chew analyzed the communication pattern, computational behavior and studied
the scalability of a distributed memory implementation of MLFMA called ScaleME
[6].

Recently, we developed a hierarchical partitioning strategy to fit for the multi-
level structure of MLFMA. With this method an enhanced load-balancing is ob-
tained, parallelization of MLFMA is improved significantly, and it has become
possible for us to solve a three-dimensional full aircraft discretized up to 10 million
unknowns with optimal parallel efficiency. In this paper, we present the details of a
parallel MLFMA data partitioning implementation including investigating the par-
allelization procedure by focusing on different parts of an oct-tree and identifying
a fine-grained data decomposition. Our approach involves the partitioning strate-
gies to distribute tasks equally among processors and minimize the interprocessor
communications.

The rest of the paper is organized as follows. In section 2, the MLFMA equations
we use are briefly described, as well as a data collecting scheme and the layout of the
oct-tree of MLFMA in our implementation. Section 3 narrates a fine-grained data
decomposition, followed by the detail partitioning strategies of each layer of the
oct-tree in section 4. The results are analyzed in section 5, and section 6 introduces
our conclusion and future work.

2. Background

2.1. Multilevel Fast Multipole Algorithm (MLFMA). For the solution of
the electromagnetic scattering problems involving three-dimensional conducting
bodies with arbitrary shapes, Multilevel Fast Multipole Algorithm, which is detailed
in [7]-[10], performs efficiently together with the Fast Multipole Method (FMM) [11]
and a large problem can be solved iteratively, where the required Matrix-Vector
Multiplications (MVMs) are involved. The application of boundary conditions for
the electric filed and the magnetic field on the surface of an object leads to the
Electric Field Integral Equation (EFIE) and the Magnetic Field Integral Equation
(MFIE), respectively. For closed surfaces, EFIE and MFIE can be combined to
obtain the Combined Field Integral Equation (CFIE). These three equations are
briefly described as follows and considered as the point of departure in our work.
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