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Abstract. We study the dynamics of two-phase flow with gravity and point

out three different transport mechanisms: non-cyclic advection, solenoidal ad-

vection, and gravity segregation. Each term has specific mathematical prop-

erties that can be exploited by specialized numerical methods. We argue that

to develop effective operator splitting methods, one needs to understand the

interplay between these three mechanisms for the problem at hand.
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1. Introduction

Numerical approximation of multiphase flow in heterogeneous reservoirs gener-
ally give rise to large systems of nonlinear equations that need to be solved to
advance the solution forward in time. Developing a successful simulator therefore
depends more on the robustness and efficiency of the nonlinear solvers than on the
quality of the underlying discretization. This has led to widespread use of fully im-
plicit formulations which promise unconditional stability. In practical simulations,
however, robust implementations of fully implicit schemes must limit the length of
the time step, depending on the complexity of the grid, the geology, fluid physics,
discretization scheme etc. With increasingly large and complex reservoir descrip-
tions, there is a growing demand for faster yet stable and predictable simulation
technology. To achieve higher efficiency, solvers tend to exploit special features of
the flow physics and possibly use some form of sequential operator splitting.

The key idea of operator splitting for an evolutionary problem is to divide the
model equations into a set of subequations that each model some parts of the
overall dynamics that can be conquered using a simpler or more effective solution
method. An approximation to the evolutionary solution is then constructed by
solving the subequations independently, in sequence or parallel, and piecing the
results together. Formally, we want to solve a Cauchy problem of the form

(1)
dQ

dt
+A(Q) = 0, Q(0) = Q0,

where A is an abstract and unspecified operator. The equation has the formal
solution Q(t) = exp(−tA)Q0. Assume now that we can write A = A1 + · · · +Am
in some natural way and that we know how to solve the subequations

(2)
dQ

dt
+Aj(Q) = 0, j = 1, . . . ,m
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more effectively that solving (1). Introducing a time step ∆t, and setting tn = n∆t,
the operator splitting can formally be written as

(3) Q(tn+1) = e−tn+1AQ0 ≈
[
e−∆tAm · · · e−∆tA2e−∆tA1

]
Q(tn).

Numerical methods are obtained by replacing the abstract operators e−∆tAj by
numerical approximations. This way, one can combine numerical methods that
have been developed to solve a particular class of evolutionary problems in a fairly
straightforward manner, reusing specialized, highly efficient, and well-tested solvers.
In particular, operator splitting enables easy replacement of one scheme with an-
other scheme for the same elementary operator. Moreover, the use of operator
splitting may also reduce memory requirements, increase the stability range, and
even provide methods that are unconditionally stable.

One of the first operator splitting methods used within reservoir simulation, was
the alternating direction implicit (ADI) method [30, 10], in which multi-dimensional
flow problems were successfully reduced to repeated one-dimensional problems that
could be effectively solved using the Thomas algorithm. Today, this method is sel-
dom used. Instead, it is common to use operator splitting methods that split the
computation of flow and transport into separate steps, e.g., methods such as IM-
PES, IMPSAT, sequential splitting, and sequentially fully implicit. Such splittings
are essential for the development of specialized and highly efficient methods like
multiscale pressure solvers [12] and streamline methods [9]. Operator splitting is
used not only to separate flow and transport, but may also be used to separate
different physical effects within a transport (or flow) equation. In particular, many
previous studies have focused on splitting methods for parabolic transport equa-
tions designed to effectively capture the balance and interaction of viscous and
capillary forces, see [15, 20] and references therein.

There are often several ways to decompose an evolution operator. A good start-
ing point is to have effective and specialized solvers for parts of the problem, e.g., an
effective pressure solver, an effective solver for advective flow, etc. Designing an op-
timal solution strategy, however, will also require a good understanding of how the
different physical effects act together to form the overall dynamics of the problem
so that one can: (i) optimize the operator decomposition into ’clean’ subproblems
that can be solved as effectively as possible, and (ii) efficiently piece together the
resulting subsolutions without creating undesired artifacts in the approximate so-
lution. Moreover, operator splitting can be used to accommodate the intuitive
principle that each physical effect should (ideally) be evolved using its appropriate
time constant.

In this paper, we discuss operator splitting for transport equations of the form

(4) φ∂tS +∇ ·
(
f(S)~v + h(S, ~x)~g

)
= q,

involving only advective and gravitational forces. Our motivation for doing so is
to understand how to utilize efficient advective solvers developed for the special
case that the vector field is associated with potential flow and the hyperbolic char-
acteristics of the system are always positive. The primary example is streamline
simulation [9], but similar principles are used in methods for flow-based ordering
[1, 23, 28]. In streamline simulation, the transport equation (4) is split into an
advective and a gravity segregation part [18, 17, 6, 3]

(5) φ∂tS +∇ ·
(
f(S)~v

)
= q, φ∂tS +∇ ·

(
h(S, ~x)~g

)
= 0.


