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FINITE ELEMENT APPROXIMATIONS OF OPTIMAL

CONTROLS FOR THE HEAT EQUATION WITH

END-POINT STATE CONSTRAINTS

GENGSHENG WANG AND LIJUAN WANG

Abstract. This study presents a new finite element approximation for an optimal control problem
(P ) governed by the heat equation and with end-point state constraints. The state constraint set
S is assumed to have an empty interior in the state space. We begin with building a new penalty
functional where the penalty parameter is an algebraic combination of the mesh size and the time
step. Based on it, we establish a discrete optimal control problem (Phτ ) without state constraints.
With the help of Pontryagin’s maximum principle and by suitably choosing the above-mentioned
combination, we successfully derive error estimate between optimal controls of problems (P ) and
(Phτ ), in terms of the mesh size and time step.

Key words. Error estimate, optimal control problem, the heat equation, end-point state con-
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1. Introduction

Let Ω be a bounded convex domain (with a smooth boundary ∂Ω) in R
d, d =

1, 2, 3. Let ω be an open subset of Ω and T be a positive number. We write Q
for the product set Ω × (0, T ) and χω for the characteristic function of the subset
ω. Let 〈·, ·〉 denote the inner product of the space L2(Ω). Consider the following
optimal control problem:

(P ) MinJ(y, u)

over all such pairs (y, u) ∈ L2(0, T ;H2(Ω)∩H1
0 (Ω))∩H

1(0, T ;L2(Ω))×L2(0, T ;L2(Ω))
that

(1.1)






∂ty −△y = χωu in Ω× (0, T ),
y = 0 on ∂Ω× (0, T ),
y(0) = y0 in Ω

and

y(T ) ∈ S.

Here, the initial data y0 is a given function in H1
0 (Ω) ∩H2(Ω), the cost functional

J is defined by

J(y, u) =
1

2

∫ T

0

∫

Ω

(y − yd)
2 dx dt+

1

2

∫ T

0

∫

Ω

u2 dx dt,

the reference function yd is taken from the spaceH1(0, T ;L2(Ω)), and the constraint
set S satisfies the following conditions:

(A1) S ⊂ H⊥
1 is a convex and closed subset with a nonempty interior in H⊥

1 .
Here, H⊥

1 denotes the orthogonal subspace of H1 in L2(Ω), while H1 is a subspace

Received by the editors June 11, 2011.
2000 Mathematics Subject Classification. 35K05, 49J20, 65M60.
This research was supported by the National Natural Science Foundation of China Under

grants 10971158 and 1087114.

844



FINITE ELEMENT APPROXIMATIONS OF OPTIMAL CONTROLS 845

spanned by f1, f2, · · · , fn0
with fi, i = 1, 2, · · · , n0, being functions in the space

H1
0 (Ω) and n0 being a positive integer.
(A2) The boundary of S, denoted by ∂S, is a C1−manifold with one codimen-

sion in H⊥
1 . Furthermore, ∂S = {y ∈ H⊥

1 : F (y) = 0}, where F ∈ C1(H⊥
1 ) holds

the property that F ′(ξ) ∈ H1
0 (Ω) whenever ξ ∈ H1

0 (Ω) ∩H⊥
1 .

The purpose of this paper is to build a discrete approximating optimal control
problem (Phτ ) (where h and τ are the mesh size and time step, respectively), and
then present an error estimate between optimal controls for those two problems.
The main steps to reach the goals are as follows: We first set up a new penalty
functional, where the penalty parameter is a suitable algebraic combination of the
mesh size and the time step, then establish, with the aid of the penalty functional,
a discrete approximating optimal control problem (Phτ ) without state constraint,
and finally, derive, with the help of the Pontryagin’s maximum principle, an error
estimate of optimal controls for those two problems. The main result of the paper
can be approximately stated as: the order of the L2−error between optimal controls

of the problems (P ) and (Phτ ) is h
1
2 whenever τ ≈ O(h2).

In general, for parabolic equations, the study of optimal control problems with
state constraints is much more difficult than the study of those without state con-
straints. This can be seen from the following points of view: (1) It is harder to show
the existence of optimal controls for the problems with state constraints than those
without state constraints. It may happen that a problem without state constraints
has optimal controls while the same problem with a state constraint has no solution.
(2) Some optimal control problems without state constraints hold the Pontryagin
maximum principle, while the same problems with some state constraints do not
have the Pontryagin maximum principle (see [5]). Therefore, to guarantee the prob-
lem (P ) having optimal controls and holding the Pontryagin maximum principle, it
is necessary to impose some conditions on S. It will be proved that when S satisfies
the above-mentioned conditions (A1) and (A2), the problem (P ) has a unique op-
timal control and holds the Pontryagin maximum principle. These two conditions
are quite close to the finite codimensionality condition provided in [5].

The end-point state constraint is a very important kind of state constraints in
the field of optimal controls for parabolic equations. To our surprise, the stud-
ies on error estimates for numerical approximations to optimal control problems
for parabolic differential equations with end-point state constraint are very lim-
ited. Here we quote two related papers [11] and [12]. In [11], the authors studied
numerical approximations of optimal controls for linear parabolic equations. The
state constraint set in that paper was assumed to have interior points in the state
space. In [12], the authors studied such a problem where the constraint set is a
non-degenerate closed unit ball centered at the origin of the state space. An error
estimate was established in [12]. Moreover, that estimate is better than what we
have in this paper. However, the problem studied in the current paper properly
covers the case in [12]. This will be seen from the following example:

Write {ek}
∞
k=1 ⊂ H1

0 (Ω) for an orthonormal basis of L2(Ω). SetH⊥
1 = span{en0+1,

en0+2, · · · }, where n0 is a positive integer. Let S ≡ {y ∈ H⊥
1 : ‖y‖L2(Ω) ≤ 1}. It is

easy to check that S satisfies (A1). Moreover, if we define F : H⊥
1 → (−∞,+∞)

by F (y) = ‖y‖2
L2(Ω) − 1, ∀ y ∈ H⊥

1 , then ∂S = {y ∈ H⊥
1 : ‖y‖L2(Ω) = 1} = {y ∈

H⊥
1 : F (y) = 0} and F ′(y) = 2y, which imply that S satisfies (A2).
Obviously, the above-mentioned S is a degenerate closed unit ball centered at the

origin of the state space. Therefore, the framework of this paper properly covers


