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ON ERROR ESTIMATES OF THE PENALTY METHOD FOR

THE UNSTEADY CONDUCTION-CONVECTION PROBLEM

I: TIME DISCRETIZATION

HAIYAN SUN, YINNIAN HE, AND XINLONG FENG

Abstract. In this paper, the penalty method is proposed and discussed for the unsteady
conduction-convection problem in two dimensions. In addition, we analyze its time discretiza-
tion which is based on the backward Euler implicit scheme. Finally, the main results of this paper
that optimal error estimates are obtained for the penalty system and the time discretization under
reasonable assumptions on the physical data.
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1. Introduction

In this paper, let Ω be a bounded domain in R
2 with C2 boundary ∂Ω or a

convex polygon. Now we consider the following unsteady conduction-convection
problem (cf. [3, 5]).

Problem (I) : Find u, p and T such that for tN > 0,




ut − ν∆u+ (u · ∇)u+∇p = λjT, (x, t) ∈ Ω× (0, tN),
div u = 0, (x, t) ∈ Ω× (0, tN),
Tt − λ−1∆T + u · ∇T = 0, (x, t) ∈ Ω× (0, tN),
u(x, t) = 0, T (x, t) = 0, (x, t) ∈ ∂Ω× (0, tN ),
u(x, 0) = 0, T (x, 0) = ϕ(x), x ∈ Ω,

(1)

where u = (u1(x, t), u2(x, t)) represents velocity vector, p(x, t) the pressure, T (x, t)
the temperature, ν > 0 the viscosity, λ−1 > 0 the thermal diffusivity, j = (0, 1) the
two-dimensional unit vector, ϕ(x, y) is the given function, tN is the final time.

The unsteady conduction-convection Problem (I) is an important dissipative
nonlinear system in atmospheric dynamics. It is the coupled equations governing
viscous incompressible flow and heat transfer process [6, 22], where the incompress-
ible flow is the Boussinesq approximation to the unsteady Navier-Stokes equations.
There are many numerical methods have been studied on the conduction-convection
problem (see [2, 5]) and many literatures (see [12, 13, 14, 15, 18]) are put into
the construction, analysis and implementation for conduction-convection problem.
Shen [19] firstly analyzed the existence uniqueness of approximation solution for
steady conduction-convection equations with the Bernadi-Raugel element. Luo
and his coworkers gave an optimizing reduced PLSMFE in [14] and a least squares
Galerkin/Petrov mixed finite element method in [15]. Shi provided nonconforming
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mixed finite element method in [18]. An analysis of conduction natural convec-
tion conjugate heat transfer in the gap between concentric cylinders under solar
irradiation was studied in [11], etc.

As we known, the velocity u, the pressure p and the temperature T are coupled
together by the impressibility constraint “divu = 0” and two dissipative nonlin-
ear equation, which make the system is difficult to solve by using the numerical
methods. In order to overcome coupled problem, the penalty method as a popular
pseudo-compressibility strategy which initially proposed by Courant [4] is popular
used (see [7, 16, 17]). Temam [22] firstly applied it to the Navier-Stokes equations.
Then, many works appeared on this subject. Shen [16] derived the optimal error
estimates for the unsteady Navier-Stokes equations as follows:

τ
1
2 (tn)‖u(tn)− uε(tn)‖L2 + τ(tn)‖u(tn)− uε(tn)‖H1 ≤ Cε,

for tn ∈ [0, tN ], where τ(tn) = min{1, tn}, C is a general positive constant and
u(tn), uε(tn) are the solution of the Navier-Stokes equations and its penalty system,
respectively. Recently, He [7] extended it to the finite element method. For the
viscoelastic Oldroyd flow problem, Wang et al derived the optimal error estimates
for the penalty system [23] and extended it to the fully discrete schemes [24]. This
motivates our interest in solving more complicated problem by this method and we
have investigated the unsteady conduction-convection problem. For the unsteady
conduction-convection problem, the penalty method for Problem (I) is as follows.

Problem (II): Find uε = (u1ε, u2ε), pε and Tε such that for tN > 0,





uεt − ν∆uε + B̃(uε, uε) +∇pε = λjTε, (x, t) ∈ Ω× (0, tN ),
div uε +

ε
ν pε = 0, (x, t) ∈ Ω× (0, tN ),

Tεt − λ−1∆Tε + B̃(uε, Tε) = 0, (x, t) ∈ Ω× (0, tN ),
uε(x, t) = 0, Tε(x, t) = 0, (x, t) ∈ ∂Ω× (0, tN ),
uε(x, 0) = 0, Tε(x, 0) = ϕ(x), x ∈ Ω,

(2)

where 0 < ε < 1 is a penalty parameter,

B̃(uε, vε) = (uε · ∇)vε +
1

2
(divuε)vε and B̃(uε, Tε) = uε · ∇Tε +

1

2
(divuε)Tε

is the modified bilinear term, (divuε)vε and (divuε)Tε are introduced to ensure
the dissipativity of Problem (II) as (divu)v is introduced in the Navier-Stokes e-
quations by Temam [21] to ensure the dissipativity of the Navier-Stokes equations.
In this way, pε can be eliminated to obtain a penalty system that only contains
uε, Tε, which is much easier to solve than the original equations. Zhang and He
have analyzed the penalty finite element for the stationary conduction convection
problems [25] and the non-stationary conduction convection problems [26], they
have given that, for all tn ∈ [0, tN ],

‖u(tn)− uε(tn)‖L2 + (

∫ tn

0

‖u(t)− uε(t)‖2H1dt)
1
2 + ‖T (tn)− Tε(tn)‖L2

+ (

∫ tn

0

‖T (t)− Tε(t)‖2H1dt)
1
2 ≤ C

√
ε,(3)

under the assumptions that the exact solutions are sufficiently smooth. When
we consider the discrete problem for the penalty system (2), the estimate (3) is
misleading. For instance, if the backward Euler scheme is applied to the penalized


