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INVERSE TEMPERATURE RECONSTRUCTION IN

THERMOCAPILLARY-DRIVEN THIN LIQUID FILMS

MATHIEU SELLIER AND SATYANANDA PANDA

Abstract. A thin liquid film subject to a temperature gradient undergoes thermocapillary convec-
tion because of the non-uniform surface tension at the free surface. This induced flow perturbs the
film free surface and generate a free surface velocity field. These observable consequences can be
thought of as the “signature” of the imposed temperature field and this work investigates whether
the temperature field can be reconstructed from this signature for general three-dimensional flows.
Using a model based on the lubrication approximation, we show that one can explicitly formulate
the partial differential equation which governs this inverse problem. This equation is solved using
finite differences. We illustrates the feasibility of this reconstruction exercise on a set of “artificial”
experimental data obtained by first solving the direct problem which consists in computing the
free surface deformation and free surface velocity field for a given applied temperature field.
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1. Introduction

Consider an oil liquid layer heated in a pan on a stove. The non-uniform heating
induces an inhomogeneous temperature field in the oil film resulting in a surface
tension gradient at the oil free surface. This surface tension gradient generates a
flow at the free surface and throughout the layer as a result of viscous drag. This
well-known phenomena, first discussed by Benard [1] early in the 20th century, is
commonly referred to as the thermocapillary effect. Since this early observation
of the phenomena, the problem has received considerable attention because of its
importance in a range of industrial applications such as the growth of crystals in
semiconductor materials, the rupture of thin films in heat transfer devices, or the
texturing of surfaces in magnetic storage devices. A comprehensive review of the lit-
erature pertaining to this phenomenon can be found in reference [2]. A consequence
of this flow induced by temperature variations is that the free surface deforms and
a velocity field develops at the free surface of the film. We can therefore think of
these phenomena as a signature of the imposed temperature field and a natural
question to consider is whether and how one can reconstruct the temperature field
from the knowledge of the local film thickness or the free surface velocity field. This
could potentially provide an alternative strategy to estimate the heat transfer on
surface coated by a liquid layer.

A number of techniques have been proposed in the literature to measure liquid
film thickness. We can mention here the needle contact technique as used by Bu-
relbach et al. or Koehler et al. [3, 4], which provides point-wise values of the film
thickness. Alternatively, optical techniques are routinely used to generate maps
of free surface deformations. Such techniques include the shadowgraph technique
[4, 5] or interferometry [6, 7], to name but a few. The interested reader is referred
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to the book of de Gennes et al. [8] for a good review of the film thickness measure-
ment techniques. Arguably, measuring the free surface velocity can be done more
readily by introducing tracers in the fluid and using Particle Image Velocimetry to
reconstruct the velocity field. For example, this technique was successfully used by
Kanemura et al. [9] as a diagnostic system to monitor Lithium flow at the Inter-
national Fusion Materials Irradiation Facility in Japan and by Eswaran et al. [10]
to monitor the the liquid free surface velocity in a moving tank.

The present authors have recently considered this problem for planar flows, i.e.
the temperature field and film thickness only vary in one direction [11]. By adopt-
ing the lubrication approximation which considerably simplifies the description of
the problem, the authors derived a closed-form solution to this problem in the
steady case. Given the strongly nonlinear nature of the fourth-order partial differ-
ential equation (pde) expressing the lubrication approximation, the existence of a
closed-form solution to the inverse problem appears quite fortunate. Such inverse
problems are typically solved in the pde-constrained optimization framework [12]
which involves the following steps:

• Parametrize the unknown input (the temperature field at the solid surface
in the present case);

• Defines an objective function measuring the mismatch between the mea-
sured data and the computed ones (the difference between the measured
and computed free surface profiles in the present case);

• Performs a sensitivity analysis to identify a direction in the parameter space
which results in a decrease of the objective functions;

• Update the input accordingly.

This well tested approach has the disadvantage of being difficult to implement and
the formulation of the sensitivity is a particularly involved stage. The procedure we
describe here is a one step approach since, for this particular problem, we are able
to reformulate the governing equations in such a way that we can explicitly derive a
pde which governs the inverse problem. The present authors adopted an analogous
approach to infer an unknown substrate topography from the knowledge of the
free surface deformation [13, 14]. This approach was later extended by Heining to
include the effect on inertia [15] and reconstruct the velocity field in the film [16]
in addition to the substrate topography.

The paper is organized as follows; the next two sections describe the governing
equation in continuous and discretized forms and the solution procedure. A section
with numerical results for the direct and inverse problems follows. The paper closes
with a discussion and conclusions.

2. The direct problem

2.1. The field equations. The problem we consider here is illustrated in Figure
1. A thin liquid layer of characteristic thickness H0 rests on a square solid substrate
(2πL × 2πL) heated at temperature Ts(X,Y ) where (X, Y ) are the spatial coor-
dinates attached to the solid surface. The liquid, assumed to be Newtonian and
incompressible, has viscosity µ, density ρ, specific heat cp, thermal conductivity k,
and the local surface tension σ depends on the temperature T according to

(1) σ = σ0 − γ0 (T − T0) ,

where σ0 is the surface tension at the reference temperature T0 and γ0 is a constant.
The liquid layer exchange heat with the surrounding by convective heat transfer.


