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MULTILEVEL NON-CONFORMING FINITE ELEMENT

METHODS FOR COUPLED FLUID-STRUCTURE

INTERACTIONS

E. AULISA, S. GARCIA, E. SWIM, AND P. SESHAIYER

Abstract. Computational mathematics is constantly evolving to develop novel techniques for
solving coupled processes that arise in multi-disciplinary applications. Often such analysis may
be accomplished by efficient techniques which involve partitioning the global domain (on which
the coupled process evolves) into several sub-domains on each of which local problems are solved.
The solution to the global problem is then constructed by suitably piecing together solutions
obtained locally from independently modeled sub-domains. In this paper we develop a multilevel
computational approach for coupled fluid-structure interaction problems. The method relies on
computing coupled solutions over different sub-domains with different multigrid levels. Numerical
results for the reliability of the schemes introduced are also presented.
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1. Introduction

The past few decades have seen significant advances in the development of com-
putational methods to obtain efficient solutions to complex coupled systems that
consist of interactions between functionally distinct components. Coupled with ad-
vances in finite element methods, these methods have provided new algorithms for
large scale simulations [13, 14]. Often in such methods, the interface continuity
between solutions in independently modeled sub-domains is enforced weakly via
Lagrange multipliers that are defined on the interface. The mortar finite element

method is one example of such a technique (see e.g. [8, 4, 5, 6, 13, 15, 16, 7, 17] and
references therein) where precise choices are described for the two fields (the inte-
rior solution variable and the interface Lagrange multiplier) to ensure stability. One
can also employ more general three-field methods, where one field represents the
solution variable on the interface and is modeled independently from the interior
solution variables on either side of the interface. Here, two Lagrange multipliers will
be required in order to enforce continuity between each interior variable and the
interface variable. In either case, Lagrange multiplier methods allow for optimal
rates of convergence along the interface between distinct components of a coupled
system.

In recent years flexible multilevel multigrid methods have been introduced [20,
19, 12, 1, 2, 3], whose solvers are based on the iterative solution of several prob-
lems over smaller domains. These techniques allow solutions to be computed at
the element level and also help us to achieve proper accuracy, load balancing and
computational efficiency. Such novel techniques provide motivation for us to de-
velop fast and efficient algorithms to solve complex fluid-structure interaction (FSI)
problems [18, 3].
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It is well known that the one of the most difficult parts of numerically approxi-
mating the fluid-structure coupling arises from the fact that the structural equations
are usually formulated with material (Lagrangian) coordinates, while the fluid equa-
tions are typically written using spatial (Eulerian) coordinates. This is important
since the nodes on the fluid mesh are attached to the surface of the structure and
hence should move with the displacement of the structure. Therefore, a straight-
forward approach to the solution of the coupled fluid-structure dynamic equations
requires moving at each time step at least the portions of the fluid grid that are
close to the moving structure. This can be appropriate for small displacements of
the structure but may lead to severe grid distortions when the structure undergoes
large motion. Several different approaches have emerged as an alternative to par-
tial re-gridding in transient computations, one of which is the Arbitrary Lagrangian
Eulerian (ALE) formulation [9, 11, 18].

When constructing a numerical method for time-dependent coupled systems that
involve a moving boundary, differences in scale between the solutions in each sub-
domain should be incorporated into the approximation. For example, in a fluid-
structure interaction where the geometry of the problem evolves due to the deforma-
tion of an elastic structure, the magnitude of the strain rate of the solid body may
be much smaller than the velocity of molecules in the fluid region. Non-conforming
finite element methods offer a promising framework for this situation since the scale
of the computational grid and degree of polynomial approximation can be refined in
each sub-domain independently. In this setting, each sub-domain is independently
partitioned by regular families of meshes, where the intersection of any two distinct
elements is either a vertex, an edge, or an empty set, and a restriction on the ratio
between edges and diameters of the elements prevents them from becoming arbi-
trarily thin. This approach will avoid the necessity of creating transition elements
between the sub-domains, which often lead to solution inaccuracy due to severe
distortions, especially in cases where an initial numerical grid is allowed to move in
response to deformation of the original domain. Our objective will be to develop a
non-conforming finite element methodology to couple a Lagrangian model describ-
ing a structure interacting with a fluid that is described by the ALE strategy in
order to simulate a full unsteady physical phenomenon.

The outline of the paper is as follows. Section 2 introduces a model fluid-
structure interaction problem and presents a brief background on the methods
that are employed to accomplish coupling. The mathematical formulation of the
non-conforming technique is illustrated on a one-dimensional problem for simplic-
ity. Numerical experiments for the one-dimensional model problem are presented
that indicate the robustness of the method introduced. Section 3 presents the ex-
tension of the problem to higher dimensions and presents the solution methodology
as well as a numerical validation through a model problem involving a beam and
fluid interaction. Finally, section 4 presents discussions and future research.

2. A One-Dimensional Model Problem and Governing Equations

For simplicity, let us now describe the mathematical formulation and solution
methodology for a fully coupled system of equations governing the interaction be-
tween a fluid and a structure in a one-dimensional setting. We will present both the
continuous problem and a discrete approximation of the model that incorporates
an ALE formulation, allowing the numerical grid in the fluid region to move along
with the interface between the two sub-domains. Such models can help to provide
insight into fluid-structure interaction effects for a totally or partially submerged


