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COMPUTATIONAL MODELLING OF SOME PROBLEMS OF

ELASTICITY AND

VISCOELASTICITY WITH APPLICATIONS TO

THERMOFORMING PROCESS
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Abstract. The reliability of computational models of physical processes has received much
attention and involves issues such as the validity of the mathematical models being used, the error
in any data that the models need, and the accuracy of the numerical schemes being used. These
issues are considered in the context of elastic, viscoelastic and hyperelastic deformation, when

finite element approximations are applied. Goal oriented techniques using specific quantities of
interest (QoI) are described for estimating discretisation and modelling errors in the hyperelastic
case. The computational modelling of the rapid large inflation of hyperelastic circular sheets
modelled as axisymmetric membranes is then treated, with the aim of estimating engineering QoI
and their errors. Fine (involving inertia terms) and coarse (quasi-static) models of the inflation
are considered. The techniques are applied to thermoforming processes where sheets are inflated
into moulds to form thin-walled structures.
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1. Introduction

The process of computational modelling for problems of continuum mechanics
consists of two main phases. The mathematical model of the physics (reality) has
first to be defined, after which a numerical approximation of the model has to be
derived and solved to give a numerical solution in terms of quantities of interest
(QoI). As each of these phases introduces error, in addition to any error in the data
of the problem, the reliability of the process is acknowledged to be of great impor-
tance. The process of assessment of the error in the mathematical model, modelling
error, is called validation, whilst that of the error in the numerical approximation
is verification. Reliability is directly related to validation and verification (V & V)
and is increasingly being studied; see e.g. Babus̆ka et al. [2] and Babus̆ka et al. [3].

In this short review paper we consider computational modelling of problems of
elasticity, viscoelasticity and hyperelasticity using finite element methods. Think-
ing first of verification we present various a priori error analyses and a posteriori

error estimators in the contexts of elasticity and viscoelasticity, with references to
papers where these have been derived. These are followed by brief descriptions of
a hyperelastic application. The validation of the models in this context is then
addressed using goal oriented techniques as proposed by Oden and Prudhomme [4]
and applied by Shaw et al. in [5].

In order to lead up to computational models for these problems, in the next
section we proceed first with a framework for describing deformation and defining
our notation, then address small displacement elasticity and viscoelasticity, and
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finally progress to hyperelastic (large) deformation. The last section of the paper
deals with the computational modelling of thermoforming processes.

2. Mathematical models, weak formulations and finite element methods

2.1. Solid Mechanics Framework (Small Displacement Case). Let G be a
compressible solid body with mass density ρ which in its undeformed state occupies
the open bounded domain Ω ⊂ R

n, n = 2, 3 with polygonal/polyhedral boundary

∂Ω. A point in Ω̄ = Ω
⋃

∂Ω is denoted by x ≡ (xi)
3
i=1, when n = 3. The bound-

ary ∂Ω is partitioned into disjoint subsets ΓD and ΓN such that ∂Ω ≡ ΓD

⋃

ΓN ,
ΓD

⋂

ΓN = ∅ and meas (ΓD) > 0. Suppose that, for time t ∈ I ≡ (0, T ], T > 0,
the body G is acted upon by body forces

f (x, t) ≡ (fi (x, t))
3
i=1 ,

for x ∈ Ω and surface tractions

g (x, t) ≡ (gi (x, t))
3
i=1 ,

for x ∈ ΓN . The displacement at a point x under the action of the forces f and

g is u ≡ (ui (x, t))
3
i=1, x ∈ Ω, t ∈ I, and with a small displacement assumption

x + u ≈ x, so that we do not need to distinguish between the deformed and
undeformed domains in most terms. Let σ ≡ (σij)

3
i,j=1 ≡ (σij (x, t))

3
i,j=1 denote

the stress resulting from the deformation.
Applying Newton’s second law of motion, relating force to the rate of change of

linear momentum, to this configuration we obtain the momentum equations

(1) ρ(x)üi (x, t)− σij,j (x, t) = fi (x, t) , i = 1, 2, 3 in Ω× I.

and these together with the boundary and initial conditions

(2) ui (x, t) = 0 in ΓD × Ī ,

(3) σij n̂j = gi (x, t) , in ΓN × Ī ,

(4) ui (x, 0) = u0
i (x) , x ∈ Ω,

(5) u̇i (x, 0) = u1
i (x) , x ∈ Ω,

define the dynamic deformation problem, where n̂ ≡ (n̂i)
n

i=1 is the unit outward
normal to ΓN , the Einstein convention has been used, and v,j ≡ ∂v/∂xj.

If the inertia terms can be neglected in the deformation and assuming that
u (x, t) = 0 ∀ t < 0, we obtain the quasistatic problem, where i, j = 1, 2, 3,

(6) −σij,j (x, t) = fi (x, t) , in Ω× I

(7) u (x, t) = 0, in ΓD × Ī

(8) σij n̂j = gi (x, t) , in ΓN × Ī ,

In order to complete the definitions of the dynamic and quasistatic problems it is
necessary to have a constitutive relationship connecting the stress to the displace-
ment and its derivatives. The constitutive relationship reflects the behaviour of the
material of the body G.


