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MULTISCALE ANALYSIS AND COMPUTATION FOR

PARABOLIC EQUATIONS WITH RAPIDLY OSCILLATING

COEFFICIENTS IN GENERAL DOMAINS

LIQUN CAO, FANGMAN ZHAI, AND YAU SHU WONG

Abstract. This paper presents the multiscale analysis and computation for parabolic equations
with rapidly oscillating coefficients in general domains. The major contributions of this study are
twofold. First, we define the boundary layer solution and the convergence rate with ε

1/2 for the
multiscale asymptotic solutions in general domains. Secondly, a highly accurate computational
algorithm is developed. Numerical simulations are then carried out to validate the theoretical
results.
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1. Introduction

We consider the initial-boundary value problems for second order parabolic e-
quations with rapidly oscillating coefficients as follows:

(1)
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∂xi
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aεij(x, t)
∂uε(x, t)

∂xj

)

= f(x, t), (x, t) ∈ Ω× (0, T )

uε(x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, T )
uε(x, 0) = ū0(x),

where Ω ⊂ Rn is a bounded convex polygonal domain with the boundary ∂Ω.
f(x, t), g(x, t), ū0(x) are known functions. In this study, we consider the following

specific cases for the coefficients aεij(x, t): i.e. aεij(x, t) = aij(
x
ε ,

t
εk

), and k =

0, 1, 2, 3.
Let ξ = ε−1x, τ = ε−kt, k = 0, 1, 2, 3. We make the following assumptions:
(A1) For k = 1, 2, 3, aij(ξ, τ) are 1-periodic and τ0-periodic in ξ, τ , respectively.

For k = 0, aij(ξ, t) are 1-periodic in ξ.
(A2) aij = aji, γ0|η|

2 ≤ aij(ξ, τ)ηiηj ≤ γ1|η|
2, γ0, γ1 > 0, ∀(η1, · · · , ηn) ∈ Rn,

where γ0, γ1 are constants independent of ε.
(A3) Let Q = (0, 1)n be the reference cell of composite materials with a periodic

microstructure, Q ⊂⊂ Q′ and Q′ = (
L
⋃

m=1
Dm) \ ∂Q′. Suppose that the boundaries

∂Dm are C1,γ for some 0 < γ < 1. aεij(x, t) ∈ Cµ,∞(Dm × (0, T )), i, j = 1, 2, · · · , n
for some constants 0 < µ < 1.

(A4) f ∈ L2(0, T ;L2(Ω)), g ∈ L2(0, T ;H1/2(∂Ω)), ū0 ∈ H1(Ω).
Problem (1) arises frequently in modeling the heat and mass transfer problem

in composite materials or porous media (see, e.g., [11]). It involves materials with
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a large number of heterogeneities (inclusions or holes). For homogenization result-
s concerning linear parabolic equations with rapidly oscillating coefficients which
depend on the spatial and time variables, we refer to Bensoussan, Lions and Pa-
panicolaou [2] for periodic cases and to Colombini and Spagnolo [7] for the general
non-periodic case. For a type of nonlinear parabolic partial differential operators,
Pankov [23] and Svanstedt [24] derived the G-convergence and the homogeniza-
tion results. Zhikov, Kozlov and Oleinik [26] investigated parabolic operators with
almost periodic coefficients and presented convergence results for the asymptotic
homogenization.

By introducing the cutoff function, Bensoussan, Lions and Papanicolaou (cf. [2])
obtained the strong convergence result without an explicit rate for the first-order
corrector of the solution of linear parabolic equations in L2(0, T ;H1(Ω)). Brahim-
Otsmane, Francfort and Murat (cf. [3]) extended this result to L2(0, T ;W 1,1(Ω)).
Ming and Zhang (cf.[21]) derived the convergence result with an explicit rate ε1/2

for the case k = 0 under the assumption u0 ∈ H3,1(Ω × (0, T )), where u0(x, t)
is the solution of the linear homogenized parabolic equation. Allegretto, Cao and
Lin (cf. [1]) investigated the higher-order multiscale method for linear parabolic
equations in four specific cases k = 0, 1, 2, 3, and derived the convergence results
with an explicit rate ε1/2 under the assumption u0 ∈ Hs+2,1(Ω×(0, T )), s = 1, 2. It
is well known that, for a bounded polygonal Lipschitz domain Ω, the assumptions
u0 ∈ Hs+2,1(Ω×(0, T )), s = 1, 2 may be invalid. Thus the error estimates in [1] fail.
In this study, we present the following two major contributions. First, we define
the boundary layer solution and derive the convergence results with an explicit
rate ε1/2 for the multiscale asymptotic solutions in a bounded polygonal Lipschitz
domain Ω. Secondly, we present a highly accurate computational algorithm.

The remainder of this paper is organized as follows. Section 2 is devoted to
the proofs of the main convergence results for the multiscale asymptotic method.
In Section 3, we discuss finite element computations and the error estimates for
the related problems. In particular, a new computational scheme is proposed to
solve the boundary layer solutions numerically. In Section 4, a finite element post-
processing technique and a numerical method with high accuracy are presented.
Finally, numerical simulations are carried out to validate the theoretical results
reported in this paper.

Throughout the paper the Einstein summation convention on repeated indices
is adopted. By C we shall denote a positive constant independent of ε.

2. Multiscale Asymptotic Expansions and the Convergence Results

In this section, we first introduce the multiscale asymptotic expansions for prob-
lem (1) which has been investigated in [1]. Then we define the boundary layer
solutions and derive the convergence results for the modified multiscale asymptotic
solutions.

Let ξ = ε−1x, τ = ε−kt, k = 0, 1, 2, 3. For the four specific cases k = 0, 1, 2, 3,
following the idea of [1], we define the formal multiscale asymptotic expansions of
the solution for problem (1) given by

(2)
uε
1(x, t) = u0(x, t) + εNα1(ξ, τ)

∂u0(x, t)

∂xα1

,

uε
2(x, t) = u0(x, t) + εNα1(ξ, τ)

∂u0(x, t)

∂xα1

+ ε2Nα1α2(ξ, τ)
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