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THE STATISTICAL SECOND-ORDER TWO-SCALE METHOD

FOR HEAT TRANSFER PERFORMANCES OF RANDOM

POROUS MATERIALS WITH INTERIOR SURFACE RADIATION

ZHIQIANG YANG, JUNZHI CUI, AND YIQIANG LI

Abstract. In this paper, a statistical second-order two-scale (SSOTS) method is presented in

a constructive way for predicting heat transfer performances of random porous materials with
interior surface radiation. Firstly, the probability distribution model of porous materials with

random distribution of a great number of cavities is described. Secondly, the SSOTS formulations

for predicting effective heat conduction parameters and the temperature field are given. Then, a
statistical prediction algorithm for maximum heat flux density is brought forward. Finally, some

numerical results for porous materials with different random distribution models are calculated,

and compared with the data by theoretical methods. The results demonstrate that the SSOTS
method is valid to predict the heat transfer performances of random porous materials.
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1. Introduction

Porous materials have been widely used in a variety of engineering and indus-
trial products. Especially, with rapid development of space aircraft, people pay
much more attention to porous materials. Inevitably, our attention is focused
on the thermal properties of porous materials. So far, some methods to predict
physical and mechanical properties of composite materials have been developed,
such as the Maxwell-Eucken model [1], the Hashin-Shtrikman bounds [2], effective
medium theory [3, 4], the self-consistent method [5] and so on. Although these
methods effectively promoted the development of computational material science,
the microstructure of real materials was greatly simplified to reduce the theoret-
ical complexity. Furthermore, they are usually used to predict macroscopic heat
conductivity parameters without considering the effect of radiation.

In fact, radiative heat transfer plays a significant rule in modern technology.
Especially, it is typically the major mode of heat transfer in high-porosity insula-
tions at high temperature environment. In recent years, some worthwhile contribu-
tions in predicting thermal radiation properties of periodical porous materials have
been achieved. Liu et al.[6] predicted the effective macroscopic properties of heat
conduction-radiation problem by homogenization methods. Bakhvalov [7] obtained
the formal expansions for heat conduction problem with radiation boundary con-
ditions. Later, Allaire et al.[8] dealt with a linear heat equation with non-linear
boundary conditions by two-scale asymptotic expansions method. Meanwhile, Yang
et al.[9] presented a second-order two-scale method to solve the heat transfer per-
formances of periodic porous materials with interior surface radiation, and gave the
error estimation for the original solution and the asymptotic solution. In theory,
[10-13] proved the existence and uniqueness of the heat conduction equation with
non-linear radiation boundary conditions.
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Nevertheless, the heat transfer problem of random porous materials with inte-
rior surface radiation is not considered so far. Actually, composite materials with
random distribution have been widely used in engineering. Such as metal-matrix
composites, foamed plastics and polymer blends. For the composites with ran-
dom distributions, Cui et al.established a statistical second-order two-scale analysis
method by introducing a random sample model to predict the physical and mechan-
ical properties of the composite structure [14-17]. Meanwhile, for the physics field
problems of composite materials with stationary random distribution, Jikov et al.
[18] proved the existences of the homogenization coefficients and the homogeniza-
tion solution.

However, the previous two-scale asymptotic expansion cannot be employed to
the heat transfer problem with interior surface radiation. So, in this paper porous
materials with random distribution will be investigated, and a new SSOTS method
is developed by a constructive way to predict heat transfer properties, and calculate
temperature and heat flux fields in meso-scopic level.

This paper is organized as follows. In the following section, the meso-scopic con-
figurations for porous materials with random distribution are represented. Section
3 is devoted to the formulation of the SSTOS method and the algorithm proce-
dure for the maximum heat flux density. In Section 4 the numerical results for
the heat transfer performances of random porous materials are shown. Finally, the
conclusions are given.

2. Representation of meso-scopic configurations of porous materials with
random distribution

Suppose that the investigated porous materials are made from matrix and ran-
dom cavities. Refer to Ref. [14, 20]. All the cavities are considered as ellipsoids or
the polyhedrons inscribed inside the ellipsoids, which are randomly distributed in
the matrix. In this paper all of the ellipsoid cavities are also considered as ”same
scale”, which means all of their long axes satisfy r1 < a < r2 where r1 and r2 are
given upper and lower bounds. Then the porous materials with random distribution
can be represented as follows:

1) There exists a constant ε satisfying 0 < ε << L, where L denotes the macro
scale of the investigated structure Ωε. Thus, the structure can be regarded as a set
of cells with the ε-size, as shown in Fig.1(a).

2) In each cell, the probability distribution of the cavities is identical. Then the
investigated structure has periodically random distribution of cavities, and then can
be represented by a probability distribution model of the cavities inside a typical
cell.

3) Each ellipsoid can be defined by 9 random parameters, including the shape,
size, orientation and spatial distribution of ellipsoid cavities: a1, a2, a3, α1, α2, α3,
x01, x02, x03, where a1, a2 and a3 denote length of three axes; three Euler angles
α1, α2, α3 of the rotations; x01, x02 and x03 the coordinates of the center. Let
the random vector ζ = (a1, a2, a3, α1, α2, α3, x01, x02, x03). Their probability den-
sity functions are denoted by fa1(x), fa2(x), fa3(x),fα1

(x), fα2
(x), fα3

(x),fx01
(x),

fx02
(x), fx03

(x), respectively.
4) Suppose that there are K ellipsoids inside a cell εY s, Y s represents a normal-

ized cell, then its random sample is defined as ωs. s=1, 2, 3... denotes the index of
samples, then we can define a sample of ellipsoids distribution as follows

ωs = (ζs1 , ζ
s
2 , ζ

s
3 · · · , ζsK−1, ζ

s
K)


