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ON A GALERKIN DISCRETIZATION OF 4TH ORDER IN

SPACE AND TIME APPLIED TO THE HEAT EQUATION

SHAFQAT HUSSAIN, FRIEDHELM SCHIEWECK, STEFAN TUREK, AND PETER ZAJAC

Abstract. We present a new time discretization scheme based on the continuous Galerkin Petrov
method of polynomial order 3 (cGP(3)-method) which is combined with a reduced numerical time
integration (3-point Gauß-Lobatto formula). The solution of the new approach can be computed
from the solution of the lower order cGP(2)-method, which requires to solve a coupled 2× 2 block
system on each time interval, followed by a simple post-processing step, such that we get the higher
accuracy of 4th order in time in the standard L2-norm with nearly the cost of the cGP(2)-method.
Moreover, the difference of both solutions can be used as an indicator for the approximation error

in time. For the approximation in space we use the nonparametric Q̃3-element which belongs
to a family of recently derived higher order nonconforming finite element spaces and leads to an
approximation error in space of order 4, too, in the L2-norm. The expected optimal accuracy of
the full discretization error in the L2-norm of 4th order in space and time is confirmed by several
numerical tests. We discuss implementation aspects of the time discretization as well as efficient
multigrid methods for solving the resulting block systems which lead to convergence rates being
almost independent of the mesh size and the time step. In our numerical experiments we compare
different higher order spatial and temporal discretization approaches with respect to accuracy and
computational cost.
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1. Introduction

Regarding the ‘optimal complexity’ of time-dependent PDE simulations, as for
instance for the heat equation as simplest example, discretization methods of order
4 in space and time seem to be excellent candidates, particularly in 3D. Since during
grid refinement each regular refinement step in time (factor 2) and in space (factor
8 = 23) leads to 16 times more unknowns, a 4th order scheme is necessary to balance
this increase in numerical complexity (while for 2D problems, a refinement in space-
time leads to 8 times more unknowns such that a 3rd order space-time scheme is
already sufficient). Hereby we assume that a specifically adapted multigrid solver
is available which exhibits linear complexity w.r.t. the problem size.

A candidate for such a higher order temporal discretization scheme will be pro-
posed in this paper. This scheme arises if we apply in the usual cGP(3)-method
[4] (with a cubic polynomial ansatz in time) a reduced numerical time integration
by means of the 3-point Gauß-Lobatto formula. The idea has been previously pub-
lished in the preprint [8]. We call the resulting scheme the ”cGP-C1(3)-method”
since it turns out that the numerical solution is a C1-function in time. In numeri-
cal experiments we show that the discretization error in the L2-norm is of order 4
with respect to the time step size in the whole time interval whereas the standard
cGP(2)-method (see [4, 10]) is only superconvergent of order 4 at the endpoints of
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the time intervals. A theoretical proof of the 4th order accuracy in the case of a
nonlinear ODE system has been presented in [8].

Concerning the numerical cost, it turns out that the numerical solution of the
cGP-C1(3)-method can be computed on each time interval by solving the (same)
coupled 2 × 2 block system in space of the cGP(2)-method followed by a simple
post-processing step which requires to solve one linear system with the mass matrix.
Moreover, we demonstrate numerically that the L2-norm of the difference between
the cGP(2) and cGP-C1(3)-solution can be used as indicator for the approximation
error in time of the cGP(2)-solution.

As corresponding 4th order space discretization, we use the standard Galerkin
Finite Element Method (FEM) with higher order nonconforming (nonparametric)

quadrilateral Q̃3-elements (see [5]). We use such nonconforming elements since they
show an advantageous numerical behaviour for saddle-point problems, particularly
for incompressible flow problems together with discontinuous pressure approxima-
tions, and they are preferable for parallel computing due to the fact that they only
require edge- or face-oriented communication which simplifies the parallel data ex-
change. To solve the associated linear (block) systems, we propose a geometrical

multigrid solver with canonical grid transfer operators due to the FEM space Q̃3.
The numerical experiments confirm that such multigrid methods [2, 5, 6, 11] are
very efficient solvers since their rate of convergence is almost independent of the
space mesh size and the size of the time step on structured as well as on semi-
structured meshes.

Note that our proposed method is of 4th order accurate only if the exact solution
is smooth enough, i.e., if its 4th order derivatives with respect to time and space are
bounded. If the exact solution is less regular then the accuracy of our method will
be reduced to the order of smoothness of the solution. We compare in numerical
experiments, where the exact solution is known and sufficiently smooth, our new
space-time discretization of order 4 with two other discretizations of order 3 and 2
concerning the achieved accuracy in relation to the required CPU-time. The results
clearly show the big advantage of the developed high order methodology and the
superior computational complexity during grid refinement.

2. The cGP(k)-method for the heat equation

As a model problem we consider the heat equation: Find u : Ω× [0, T ]→ R such
that

(1)
dtu−△u = f in Ω× (0, T ),

u = 0 on ∂Ω× [0, T ],
u(x, 0) = u0(x) for x ∈ Ω,

where u(x, t) denotes the temperature in the point x ∈ Ω at time t ∈ [0, T ], f :
Ω × (0, T ) → R a given source term and u0 : Ω → R the initial temperature
field at time t = 0. For simplicity, we assume a polygonal domain Ω ⊂ R

2 and
homogeneous Dirichlet boundary conditions. Then, problem (1) can be considered
as an evolution problem in the Hilbert space V := H1

0 (Ω). Let (·, ·)Ω denote the
inner product in L2(Ω) and a(·, ·) the following bilinear form

a(u, v) := (∇u,∇v)Ω ∀ u, v ∈ V.

For the time discretization, we decompose the time interval I = [0, T ] into subin-
tervals In := [tn−1, tn], n = 1, . . . , N . Applying the exact cGP(k)-method (see [4]
for details) we get a time marching process with the following ”In-problem”: Find


