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RESEARCH OF MULTICORE-BASED PARALLEL GABP

ALGORITHM WITH DYNAMIC LOAD-BALANCE

HANYUAN ZHENG, ANPING SONG, ZHIXIANG LIU, LEI XU, MINCHAO WANG,
AND WU ZHANG∗

Abstract. Based on Gaussian Belief Propagation(GaBP) algorithm for solving sparse symmetric

linear equations, an iterative acceleration optimization method of GaBP is studied and a corre-

sponding optimized storage scheme is proposed. We explore the parallelism and load balancing
features of this algorithm and present a multicore-based parallel GaBP algorithm with dynam-

ic load-balance. The numerical results indicate that this algorithm can solve large scale sparse
symmetric linear equations with good results and high parallel efficiency.
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1. Introduction

Solving linear equations Ax = b is the fundamental problems in various scientific
and engineering computing. Numerical methods, such as finite element method,
finite difference method, spectral method, and finite volume method [1, 2, 10, 3],
convert the actual problem into the problem of solving sparse linear equations.
With the increase of the scale and complexity of problems, how to effectively solve
large scale sparse linear equations has been a hot area [4].

For solving sparse linear equations, iterative method is mainly used. The it-
erative method includes classical iterative method, such as Jacobi method, SOR
method, Krylov subspace method which is very popular in recent years [5, 6]. In
2008, Ori Shental et al proposed an iterative method for symmetric diagonally
dominant linear equations Gaussian Belief Propagation(GaBP) [7]. GaBP algo-
rithm converts the problem of solving linear system into solving the problem of
Probability and information dissemination which differs from the classical iterative
method and Krylov subspace method. For symmetric diagonally dominant linear
equations, GaBP algorithm has a good convergence, and is essentially equivalent
to the classic Gauss elimination method.

The main objective of this paper is how to efficiently solve large scale sparse
symmetric linear equations. We study the iterative acceleration method to optimize
the GaBP algorithm based on its classical GaBP counterpart. By exploring the
parallelism and features of GaBP algorithm, we present a multicore-based parallel
GaBP algorithm with the feature of dynamic load-balance to solve large-scale sparse
linear equations. Numerical experiment of solving large scale are fulfilled and results
are compared with other algorithms.

The rest of the paper is organized as follows. In Section 2, GaBP Algorithm will
be described in detail. the iterative acceleration optimization method of GaBP and
a corresponding optimized storage scheme is shown in Section3. We discuss the
experimental results in section 4. Finally, Section 5 concludes the paper.
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2. GaBP Algorithm

In this section, we will review the classical GaBP algorithm [7, 8, 9]. For sym-
metric diagonally dominant linear equations

(1) Ax = b, A ∈ <n×n, x, b ∈ <n,

the coefficient matrix A is a nonsingular symmetric diagonally dominant matrix.

2.1. Symmetric Linear Equations and Its Probability Inference Model.
First, We connect undirected graph with symmetric linear equations. Given an
undirected graph G = (V,E), where V is a set of all vertices in G corresponding
to variables x in linear equations and E is the set of all edges associated with the
non-zero elements in matrix A.

Now, we define the following joint Gaussian probability density function based
on the coefficient matrix A and the observation vector b

(2) p(x) ∼ exp(−1

2
xTAx+ bTx),

and its corresponding graph G consisting of edge potentials (’compatibility func-
tions’) ψij and self potentials (’evidence’) φi. These graph potentials are simply
determined according to the following pairwise factorization of the Gaussian func-
tion (2)

(3) p(x) ∝
n∏

i=1

φi(xi)
∏
{i,j}

ψij(xi, xj).

where ψij(xi, xj) , exp(−xiAijxj) and φi(xi) , exp(− 1
2Aiix

2
i + bixi).

Proposition 1. ([7] Proposition 1 Solution and inference). The computation of
the solution vector x∗ is identical to the inference of the vector of marginal means
µ = µ1, · · · , µn over the graph G with the associated joint Gaussian probability
density function p(x) ∼ N(µ , A−1b, A−1).

According to Proposition 1, we can translate the problem of solving the linear
system (1) from the algebraic domain to the domain of probabilistic inference, see
Figure 1.

Next, we will introduce the BP(Belief Propagation) algorithm. The set of graph
nodes N(i) denotes the set of all the nodes neighboring the ith node. The set
N(i) \ j excludes the node j from N(i).

2.2. BP Algorithm. Belief propagation (BP) is equivalent to applying Pearls
local message-passing algorithm [11], originally derived for exact inference in trees,
to a general graph even if it contains cycles (loops). The excellent performance of
BP in these applications may be attributed to the sparsity of the graphs.

The BP algorithm functions by passing real-valued messages across edges in the
graph and consists of two computational rules, namely the ′sum-product rule′ and
the ′product rule′. For a graph G composed of potentials ψij and φi as previously
defined, the conventional sum-product rule becomes an integral-product rule and
the message mij(xj) [12], sent from node i to node j over their shared edge on the
graph, is given by

(4) mij(xj) ∝
∫
xi

ψij(xi, xj)φi(xi)
∏

k∈N(i)

mki(xi)dxi.


