
INTERNATIONAL JOURNAL OF c© 2014 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING, SERIES B Computing and Information
Volume 5, Number 1-2, Pages 13–20

DEVELOPMENT OF A RESTRICTED ADDITIVE SCHWARZ

PRECONDITIONER FOR SPARSE LINEAR SYSTEMS ON

NVIDIA GPU

HUI LIU, ZHANGXIN CHEN, SONG YU, BEN HSIEH AND LEI SHAO

Abstract. In this paper, we develop, study and implement a restricted additive Schwarz (RAS)
preconditioner for speedup of the solution of sparse linear systems on NVIDIA Tesla GPU. A
novel algorithm for constructing this preconditioner is proposed. This algorithm involves two
phases. In the first phase, the construction of the RAS preconditioner is transformed to an
incomplete-LU problem. In the second phase, a parallel triangular solver is developed and the
incomplete-LU problem is solved by this solver. Numerical experiments show that the speedup of
this preconditioner is sufficiently high.

Key words. Restricted additive Schwarz preconditioner, linear solver, ILU, parallel triangular
solver, GPU

1. Introduction

A restricted additive Schwarz (RAS) preconditioner is a general parallel precon-
ditioner for speedup of the solution of sparse linear systems, which was developed
by Cai et al. [4]. This preconditioner is a cheaper variant of the classical additive
Schwarz preconditioner, and it is faster in terms of iteration counts and CPU time
[4, 5]. Nowadays, RAS is the default parallel preconditioner for the solution of
nonsymmetric sparse linear systems in PETSc [1, 4] and has been used in PHG
[20]. Our long-term goal is to develop and implement this type of preconditioners
for numerical reservoir simulation [7, 8].

GPU, which was used only for graphics processing in its earlier development, is
now much more powerful in float point calculation than conventional CPU. It has
been used in many scientific applications, such as FFT [16], BLAS [2, 3, 16], Krylov
subspace solvers [18, 13, 14, 15] and algebraic multigrid solvers [11]. Algorithms
for basic matrix and vector operations are well understood now. However, due
to the irregularity of sparse linear systems, the development of efficient parallel
preconditioners on GPU is still challenging. In this paper, we introduce, study and
implement a RAS preconditioner for speedup of the solution of sparse linear systems
on NVIDIA Tesla GPU. For a given matrix A whose size is n × n, a sub-problem
is constructed and written as a smaller i × i matrix, i ≤ n [4]. Following this
idea, combining all sub-problems together, the final problem becomes a diagonal
block matrix problem, diag(A1, A2, . . . , Ak), which can be solved by incomplete-LU
factorization, where k is the number of sub-problems. We have recently developed
a parallel triangular solver in [15], where a new matrix format, HEC (hybrid ELL
and CSR), and a modified level schedule method on GPU have been introduced.
This parallel triangular solver will be used in the current development and study of
the RAS preconditioner. Numerical experiments performed show that the speedup
of this preconditioner is sufficiently high.

Received by the editors January 5, 2014 and, in revised form, March 19, 2014.
1991 Mathematics Subject Classification. 65F08, 65F50, 65Y04, 65Y05, 65Y10.
This research was supported by NSERC/AIEE/Foundation CMG and AITF Chairs.

13



14 H. LIU, Z. CHEN, S. YU, B. HSIEH AND L. SHAO

The layout is as follows: In §2, basic knowledge and our deduction of RAS are
introduced. In §3, our parallel triangular solver is described. In §4, numerical
experiments are employed to test our GPU version RAS preconditioner. In the
end, some conclusions are presented.

2. Restricted Additive Schwarz Preconditioner

We consider a linear system:

(1) Ax = b,

where A =
(

Aij

)

is an n × n nonsingular sparse matrix. Denote by L the lower

part of A. Then the non-zero pattern we use is L+LT , where LT is the transpose
of L. Also, we define an undirected graph G = {W,E}, where the set of vertices
W = {1, . . . , n} represents the n unknowns and the edge set E = {(i, j) : Aij 6=
0, Aij ∈ L+ LT } represents the pairs of vertices [4].

The graph G is partitioned into k non-overlapping subsets by METIS [12], de-
noted by W 0

1 ,W
0
2 , . . . ,W

0
k . We always assume that all subsets of W are sorted in

ascending order according to the column indices. For any subset W 0
i , a 1-overlap

subset W 1
i can be obtained by including all the immediate neighboring vertices

in W [4]. Repeating this process, a δ-overlap subset W δ
i can be defined, and the

resulting overlapping subsets are W δ
1 ,W

δ
2 , . . . ,W

δ
k .

For any nonempty subset V of W with N (N > 0) vertices, we define a mapping
m : V → W by

(2) m(p(j)) = j,

where p(j) is the position of vertex j in V . Then we introduce matrix B as follows:

(3) Bij = Am(p(i))m(p(j)).

In this case, B is an N ×N matrix.
Applying this definition, for any W δ

i with Ni vertices, we introduce the mappings
m1,m2, . . . ,mk. Using equation (3), we obtain submatrices, A1, A2, . . . , Ak. When
a RAS preconditioner is applied to the solution of linear systems, these submatrices
can be solved simultaneously. We now assemble these submatrices and solve an
enlarged system:

(4) M = diag(A1, A2, . . . , Ak),

where M is an (N1 +N2 + . . .+Nk)× (N1 +N2 + . . .+Nk) matrix. This matrix
can be solved by ILU(k) or ILUT. The structures of L and U are of the following
form:

(5) L = diag(L1, L2, . . . , Lk), U = diag(U1, U2, . . . , Uk).

The final problem is how to solve the lower and upper triangular problems. The
whole assembling procedure is described in Algorithm 1.

Algorithm 1 Assembling a RAS preconditioner

1: Constructing the undirected graph G using pattern L+ LT ;
2: Partitioning G using METIS;
3: Constructing subgraph W δ

i and the corresponding mapping mi;
4: Assembling submatrix Ai;
5: Factorizing Ai and obtaining the lower and upper triangular matrices Li and

Ui, respectively.


