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INSTABILITY OF CRANK-NICOLSON LEAP-FROG FOR

NONAUTONOMOUS SYSTEMS

WILLIAM LAYTON, AZIZ TAKHIROV AND MYRON SUSSMAN

Abstract. The implicit-explicit combination of Crank-Nicolson and Leap-Frog methods is widely
used for atmosphere, ocean and climate simulations. Its stability under a CFL condition in the

autonomous case was proven by Fourier methods in 1962 and by energy methods for autonomous

systems in 2012. We provide an energy estimate showing that solution energy can grow with time
in the nonautonomous case, with worst case rate proportional to time step size. We present two

constructions showing that this worst case growth rate is attained for a sequence of timesteps

4t → 0. The construction exhibiting this growth for leapfrog is for a problem with a periodic
coefficient.
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1. Introduction

Stability of CNLF, the Crank-Nicolson Leap-Frog method (CNLF) below, is
considered for systems with nonautonomous A(t),Λ(t):

(1.1)
du

dt
+A(t)u+ Λ(t)u = 0, for t > 0, and u(0) = u0.

Here A(t),Λ(t) are d×d matrices and u(t) is a d vector. A(t) is positive semi-definite
symmetric and Λ(t) is skew symmetric. Let | · |2 denote the euclidean norm. The
CNLF discretization of (1.1) is expressed as follows. Let tn = n∆t; given u0, u1

find un ∈ X for n ≥ 2 satisfying

(CNLF)
un+1 − un−1

2∆t
+A(tn)

un+1 + un−1

2
+ Λ(tn)un = 0,

with approximations to appropriate accuracy, [23], at the first two time steps.
CNLF is the implicit-explicit (IMEX) method used for the dynamic core of most
current atmosphere, ocean and climate codes, e.g., [6], [15], [22], [13] and other
geophysics problems, [16] .

Stability was shown for the scalar, autonomous case under the timestep condition

(1.2) ∆t|Λ|2 ≤ α < 1,

in 1963 by Johansson and Kreiss [14] and for (non-commuting) autonomous systems
in 2012 [17], see also [23], [6] for background. We prove herein weak instability in
the nonautonomous case.

Remark 1. CNLF is often used in geophysical fluid dynamics codes together with
a time filter. The general strategy used is to split the (nonlinear) equations of mo-
tion into terms corresponding to high speed/low energy waves and low speed/high
energy waves. The respective terms are discretized by CN and LF with time filters.
Williams [24], for example, lists 20 atmosphere codes, 15 ocean codes and 24 cou-
pled / geophysics codes based on this approach. (The precise realization varies with
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the effects included and the implementation. For one detailed development of one
such splitting see Section 3 in [9].) Linearization of the split system leads to nonau-
tonomous systems of the form (1.1) above. Time filters are used with CNLF, e.g.,
[3], [19], [24], [13], with the usual explanation that the latter controls the unstable
mode of CNLF. However, the (so-called) unstable mode (or computational mode)
of CNLF has recently been proven in [12] to be asymptotically stable under (1.2).
We do not study time filters herein. However, the instability result does suggest
that one positive contribution of time filters may be to control the weak instability
identified herein that arises from nonautonomous and periodic Λ(t).

The extension of stability theory for linear multistep methods from autonomous
to nonautonomous (with test problem y′ = λ(t)y) has a rich history. Dahlquist [5]
proved that an A-stable method is similarly stable for y′ = λ(t)y when Re (λ(t)) ≤
0, further developed in [18]. For the corresponding AN-stability theory for Runge-
Kutta methods, see Hundsdorfer and Stetter [10]. For non-A-stable multi-step
methods, nonautonomous stability theory was recently developed in [4] with both
stability and instability conditions for y′ = λ(t)y. Given a linear multistep method
for y′ = λ(t)y, let ρ(z), σ(z) be the complex polynomials associated with the method
in a standard way and form

A := Re

[
ρ(z)

σ(z)

]
z=i

.

Even if ∆t is small enough to be in the stability region of the method, if A < 0
then there exists a λ(t) < 0 for which the method is unstable [4].

While the theory in [4] does not apply to IMEX methods like CNLF, it can be ap-
plied to the special case A(t) = 0. The leapfrog method (A(t) = 0) is an important
wedge example. Indeed, for leapfrog, we calculate ρ(z) = 1

2z
2 − 1

2 , and σ(z) = z.
Thus A = 0 and the theory of [4] is inconclusive. Many interesting behaviors
are possible between exponential asymptotic stability and exponential instability.
One hint is that there is a rich catalog (e.g., [1],[20],[21],[25] ) of exotic behavior
of leapfrog for Burgers equation starting (to our knowledge) with Fornberg’s 1973
paper [8].

The results are clearest for the case that Λ(t) is Lipschitz,

(1.3) |Λ(tn)− Λ(tn−1)|2 ≤ a0∆t.

We prove in Theorem 1 that any instability is, at worst, a weak one:

(1.4) |uN+1|22 + |uN |22 ≤ C(α, u0, u1) exp

[
∆t

a0

1− α
tN
]
.

The rate constant ∆ta0/(1 − α) → 0 as ∆t → 0 but exp
[
∆t a0

1−α t
N
]
→ ∞ as

tN →∞. However, the true solution of (1.1) is uniformly bounded and if A(t) > 0,
u(t)→ 0 as t→∞. Section 3 presents give two constructions that show that (1.4)
is best possible for the leapfrog case (A(t) = 0).

Remark 2. Theorem 2.5 in [4] shows that for A < 0, then there is an alternating
pair of states that together lead to growth. The first construction in Section 3 shows
similar behavior for A = 0.

In Section 3 we give two constructions that show that LF (and thus CNLF)
is exponentially unstable for arbitrarily small timesteps when Λ(t) is a bounded
function that changes sign periodically. A numerical study is also given in Sec-
tion 3. The numerical data suggest that the instability occurs for a sparse set of


