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MULTISCALE FEM-FVM HYBRID METHOD FOR

CONVECTION-DIFFUSION EQUATIONS WITH PERIODIC

DISCONTINUOUS COEFFICIENTS IN GENERAL CONVEX

DOMAINS

LIRUI SHEN, LIQUN CAO, AND YAU SHU WONG

Abstract. This paper presents the multiscale analysis and numerical algorithms for the convection-
diffusion equations with rapidly oscillating periodic discontinuous coefficients. The multiscale
asymptotic expansions are developed and an explicit rate of convergence is derived for the con-
vex domains. An efficient multiscale hybrid FEM-FVM algorithm is constructed, and numerical
experiments are reported to validate the predicted convergence results.
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1. Introduction

In this paper, we consider the convection-diffusion equations with rapidly oscil-
lating periodic discontinuous coefficients given as follows:
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aε0(x, t)uε(x, t) = f(x, t), (x, t) ∈ Ω × (0, T ),

uε(x, t) = g0(x, t), (x, t) ∈ Γ0 × (0, T ),

σε(u
ε) ≡ νi

(
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= g1(x, t),

(x, t) ∈ Γ1 × (0, T ),

uε(x, 0) = ū0(x), x ∈ Ω,

where Ω ⊂ Rd (d ≥ 1) is a bounded convex Lipschitz domain with the boundary
∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅, meas(Γ0) > 0, where meas(Γ0) denotes the Lebesgue’s
measure of Γ0; uε(x, t) is the unknown function, f(x, t), g0(x, t), g1(x, t) and ū0(x)
are known functions. Here, we focus on the following specified cases: aεij(x, t) =

aij(
x
ε ,

t
εk

), bεi (x, t) = bi(
x
ε ,

t
εk

) and aε0(x, t) = a0(xε ,
t
εk

), k = 0, 1; ν = (ν1, · · · , νd)

is the outward unit normal to Γ1. Throughout the paper, the Einstein summation
convention on repeated indices is adopted. By C we denote a positive constant
independent of ε.

Let ξ = ε−1x, τ = ε−kt, k = 0, 1. We make the following assumptions:
(A1) For k = 0, aij(ξ, t), bi(ξ, t) and a0(ξ, t) are 1-periodic in ξ; For k = 1,

aij(ξ, τ) bi(ξ, τ) and a0(ξ, τ) are 1-periodic in ξ and τ0-periodic in τ .
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(A2) aij , bi, a0 ∈ L∞(Rd × (0,+∞)); aij = aji; there are two positive constants
γ0 and γ1 such that γ0ηiηi ≤ aij(ξ, τ)ηiηj ≤ γ1ηiηi, ∀ η = (η1, · · · , ηd) ∈ Rd for a.e.
ξ ∈ Rd, τ ∈ (0,+∞).

(A3) f ∈ L2(0, T ;L2(Ω)), g0 ∈ L2(0, T ;H1/2(Γ0)), g1 ∈ L2(0, T ;H−1/2(Γ1))
and ū0 ∈ H1(Ω).

(A4) Let Q = (0, 1)d be the reference cell of the composite material. Assume

that Q ⊂⊂ Q′ with Q′ =
L
⋃

m=1
Dm. Suppose that the boundaries of Dm belong

to C1,γ for some 0 < γ < 1 and that aij(ξ, τ) ∈ Cµ(Dm × (0,+∞)), bi(ξ, τ) ∈
Cµ(Dm × (0,+∞)), i, j = 1, · · · , d, for some constants 0 < µ < 1.

Problem (1) has a wide range of applications in fluid mechanics especially in
highly heterogeneous media; and in the heat and mass transfer problems for com-
posite materials or porous media (see [4, 22, 34]). It is noted that the problem
often involves materials with a large number of heterogeneities (inclusions or holes).
For homogenization results concerning linear parabolic equations with rapidly os-
cillating coefficients which depend on the spatial and time variables, we refer to
Bensoussan, Lions and Papanicolaou [4] for the periodic cases and to Colombini
and Spagnolo [17] for the general non-periodic case. For a type of nonlinear par-
abolic partial differential operators, Pankov [33] and Svanstedt [36] derived the
G-convergence and the homogenization results. Zhikov, Kozlov and Oleinik [41] in-
vestigated the parabolic operators with almost periodic coefficients and presented
convergence results for the asymptotic homogenization.

By introducing a cutoff function, Bensoussan, Lions and Papanicolaou [4] ob-
tained the strong convergence result without an explicit rate for the first-order
corrector of the linear parabolic equations in L2(0, T ;H1(Ω)). Brahim-Otsmane,
Francfort and Murat [5] extended this result to L2(0, T ;W 1,1(Ω)). Ming and Zhang
[30] derived the convergence result with an explicit rate ε1/2 for the case k = 0
under the assumption u0 ∈ H3,1(Ω × (0, T )), where u0(x, t) is the solution of
the linear homogenized parabolic equation. Allegretto, Cao and Lin [2] investi-
gated the higher-order multiscale method for the linear parabolic equations in the
four specific cases k = 0, 1, 2, 3, and obtained the convergence results with an ex-
plicit rate ε1/2 under the assumption u0 ∈ Hs+2,1(Ω × (0, T )), s = 1, 2. It is well
known that, for a bounded convex polygonal Lipschitz domain Ω, the assumptions
u0 ∈ Hs+2,1(Ω × (0, T )), s = 1, 2 may be invalid. Thus the error estimates pre-
sented in [2] are not valid. On the other hand, many results are now available for
the finite volume element methods (FVEM) for the elliptic and parabolic equations.
For example, we refer to [3, 7, 27, 11, 14, 15, 18, 19, 20] for the early important
results. Chou and Ye [13] presented the unified variational form of the conforming
and nonconforming elements, and the DG for 2-D elliptic equations with the error
estimates of triangular elements. Li et al. [25] and Luo et al. [26] developed FVEM
and the stabilized FVEM for the Navier-Stokes equations in 2-D, and obtained the
error estimates for triangular elements under the assumption ∆t = O(h). However,
the error estimates for 3-D are not available. Under the assumption that the term
of right side f(x, t) ≡ 0 is indispensable, Sinha and Geiser [35] investigated the
FVEM for the 2-D and 3-D convection-diffusion equations, and derived the optimal
error estimates for the triangular and tetrahedral elements. For other recent results
in this topic, we refer to [31, 21, 29, 40].

In this paper, we present the following new results:
(i) The interior error estimates for the multiscale asymptotic solutions of the

original problem (1) are obtained under the weaker assumptions (see Theorem 3.1).


