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TRAPPED MODES AROUND FREELY FLOATING BODIES IN

TWO-LAYER FLUIDS

FILIPE S. CAL, GONÇALO A. S. DIAS, AND JUHA H. VIDEMAN

Abstract. We consider the coupled system modeling the interaction of time-harmonic progres-
sive water-waves with an array of three-dimensional freely floating obstacles in a two-layer fluid.

Presenting a variational and operator formulation for the problem and a condition guaranteeing

the existence of trapped waves, we give a number of examples of floating structures supporting
trapped waves. We also study how the problem parameters (density ratio, obstacle dimensions,

layer depths and radian frequency) influence the trapping condition.
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1. Introduction

The linearized equations modeling the interaction of water waves with freely
floating structures were written down over 60 years ago by John [7, 8] (for a more
recent presentation see, e.g., Mei et. al. [16] and Cal et. al. [1]). Since then
the behavior of time-harmonic water waves around fixed structures has been quite
thoroughly investigated (see Kuznetsov et al. [11] and all references therein) but
results on freely floating bodies have been much scarcer. Recently though, there has
been kind of a revival, see McIver and McIver [15], Porter and Evans [20], Fitzgerald
and McIver [5], Kuznetsov [10], Kuznetsov and Motygin [12, 13], Nazarov [17, 18],
Nazarov and Videman [19], Cal et al. [1], Cal, Dias and Videman [3], and Dias and
Videman [4].

This work is directed at coupled free (unforced) oscillations of the freely floating
structures with the surrounding unbounded fluid domain. These oscillations, also
known as trapped modes, are excluded from John’s initial analysis since his interest
lay with the conditions for a unique solution thus immediately excluding trapped
modes. The corresponding waves are characterized by their propagation in the
vicinity of the obstacles that generate them. Studying these motion trapped waves
is relevant to offshore activities, think of oil and gas drilling, and for the construction
of floating structures such as piers and bridges subject to tides and/or wave motions.
Harbor buoys and vessels in channels and fjords are also prone to this kind of
oscillations. In the area of energy extraction from waves in the ocean, it has been
shown that there are differences in energy efficiency between a large buoy and an
array of smaller ones [6].

Our main goal here is to provide examples of (arrays of ) floating structures that
support trapped modes in a fluid region of finite depth consisting of two horizontally
infinite fluid layers of constant density. With our sights set on that goal, we first
determine general conditions guaranteeing the existence of waves that propagate
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along a periodic array of freely floating obstacles but decay away from them. Similar
analysis was done in the case of fixed obstacles in Cal, Dias and Videman [2],
and for freely-floating obstacles in a homogeneous fluid by Dias and Videman [4].
We will adopt the idea, suggested by Nazarov and Videman [19], to separate the
motions relevant to buoyancy from the other rigid-body motions of the floating
obstacles. As in [19], we also rewrite the equations of motion for the coupled time-
harmonic problem as a spectral boundary-value problem consisting of a differential
equation and an algebraic system, coupled through boundary conditions. Following
the argument presented in [19], we then reduce the original quadratic eigenvalue
problem into a linear one.

It follows from Kelvin’s Circulation Theorem that an initially irrotational flow
cannot stay irrotational if the flow is baroclinic, cf. Kundu et al. [9]. One way to
approach baroclinicity without losing the advantage of working with velocity poten-
tials is to consider multiple homogeneous fluid layers. Despite being a crude repre-
sentation of continuous stratification, the multi-layer models are widely used in Geo-
physical Fluid Dynamics when combined with shallow-water or quasi-geostrophic
dynamics.

The paper is organized as follows. First we lay out the equations, divide the
domain into periodicity cells by imposing quasi-periodic conditions along the direc-
tion of propagation and present the stability conditions. In Section 3 we analyse
the problem without obstacles and in Section 4 present the variational and operator
formulation. Next we introduce the scheme that reduces the original problem to
a linear eigenvalue problem and present general sufficient conditions for the exis-
tence of trapped modes. In Section 6 we provide examples of obstacles, surface-
or interface-piercing, supporting trapped modes and study the dependence of the
trapping and the stability conditions on the problem parameters.

2. Equations of motion

Consider two homogeneous, incompressible, inviscid fluid layers of finite depth
lying on top of one another and over a flat bottom. For gravitational stability,
assume that the constant density in the lower layer is greater than the one in
the upper layer (ρ2 > ρ1 > 0). The origin of Cartesian coordinates is fixed at the
interface between the fluid layers in such a way that the (x, y)−plane coincides with
its rest position and the z−axis points upwards. Partially or totally submerged in
the fluid domain, there is a periodic array of obstacles extending to infinity in the
y-direction and floating freely under the effect of gravity.

The fluid domain is divided into periodicity cells, infinite in the x-direction,
having unit length (after non-dimensionalisation) in the y-direction and containing
the same obstacles. The upper and lower fluid layers are denoted by Ξ1 = R2 ×
(0, h1), h1 ∈ R+ and Ξ2 = R2 × (−h2, 0), h2 ∈ R+, with h1 and h2 being the
rescaled layer depths, and the model periodicity cells by

Πj =
{

(x, y, z) ∈ Ξj : y ∈ (0, 1)
}
, j = 1, 2 .

All length variables have been made non-dimensional by division by the cell length.
Within the periodicity cells, we introduce bounded open sets Θ1 ⊂ Π1 and

Θ2 ⊂ Π2 corresponding to the submerged part of a model obstacle and assume that
the fluid regions $1 = Π1 \ Θ1 , $2 = Π2 \ Θ2 are Lipschitz domains so that the
normal vector is defined almost everywhere on ∂$1 and ∂$2. We also define the


