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Abstract. The appropriate metric of quantum speed limit for the triatomic molecules
is discussed using a generalized geometric approach. The researches show the quan-
tum Fisher information metric is tighter than the Wigner-Yanase information metric in
realistic molecular dynamical evolution. The quantum speed limit metric is related to
the initial evolution state of molecules.
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1 Introduction

The quantum speed limit originates from the time-energy uncertainty relation which is
the nature of the quantum mechanics. It represents the maximal evolution speed of a
quantum system. With the development of quantum information science and laser tech-
nology, dynamical evolutions of quantum system become exceedingly short-timed evo-
lutions, which bring along a practical applicability for the quantum speed limit and the
problem has become the focus topic in the current frontier field. The bound of the quan-
tum speed limit time for unitary evolutions in a closed system is firstly given by the
Mandelstam and Tamm [1], then Margolus and Levitin provided another QSL (quantum
speed limit ) on the time evolution which is tighter than MT bound but does not recover
the MT one [2]. Later, the MT QSL and ML QSL are extended to be suitable for more
dynamical system [3–12]. However, QSL for the realistic molecular system has not been
proposed. Recently, Diego Paiva Pires and his co-workers construct a new fundamental
family of geometric quantum speed limits [13] and provide the quantity how much a
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certain geometric QSL is saturated. They take single-qubit unitary dynamics as an exam-
ple and prove that the geometric QSL corresponding to the quantum Fisher information
metric is tighter than the one corresponding to the Wigner-Yanase information metric,
but they do not give the result if a higher-dimensional quantum system is considered.
Here we extend the method to the molecular system and discuss the question whether it
is same to the single-qubit system. The algebraic model of the molecule has been applied
successfully to study vibrations in polyatomic molecules [14–18], and has been extended
to research the dynamical entanglement in small molecules [19, 20].

This paper proceeds as follows. In Sec. 2, the algebraic molecular model is first re-
viewed briefly, and the geometric quantum speed limits are given using the algebraic
model. In Sec. 3, the generalized geometric QSLs corresponding to the the quantum
Fisher information metric and the Wigner-Yanase information are calculated, then the rel-
ative difference between the dynamical evolution distance and the geodesic is discussed.
Finally, concluding remarks are given in Sec. 4.

2 Quantum Speed Limits metric in triatomic molecules

The algebraic Hamiltonian of a free linear triatomic molecule can be represented as two
coupled quadratic anharmonic oscillators using the U(2) algebra [21, 22]
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Î02

2

)

−λ(Â†
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where ω01 and ω02 are the angular frequencies of the triatomic molecule corresponding
to the bond 1 and bond 2. λ is the coupling coefficient which depend on the experimental
values of realistic molecular spectra. The quadratic operators Â†

i , Âi, Î0i act on the state
|Ni,vi〉 [21],
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where x0i=1/Ni is the anharmonic correction [23, 24].
The time-dependent wave function can be written as the following form when the

initial states are chosen to be |ψ(0)〉= |N1,v1〉⊗|N2,v2〉≡ |v0,vn−v0〉,

|ψ(t)〉= e−itĤ|ψ(0)〉
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