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Abstract

In this paper, we investigate truncated ℓ2/ℓ1−2 minimization and its associated alter-

nating direction method of multipliers (ADMM) algorithm for recovering the block sparse

signals. Based on the block restricted isometry property (Block-RIP), a theoretical anal-

ysis is presented to guarantee the validity of proposed method. Our theoretical results

not only show a less error upper bound, but also promote the former recovery condition

of truncated ℓ1−2 method for sparse signal recovery. Besides, the algorithm has been

compared with some state-of-the-art algorithms and numerical experiments have shown

excellent performances on recovering the block sparse signals.
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1. Introduction

Compressed sensing (CS) [1–4] is a paradigm to acquire sparse, or compressible signals at

a rate remarkably lower than that of the classical Nyquist sampling, which has attracted much

attention in recent years. Nowadays, CS plays a very important role in many ways, for example,

image processing [5], face recognition [6], subspace clustering [7] and other aspects. Recovering

the sparse signals from linear measurements is an important subject of CS. The goal is to

recover an unknown sparse signal x ∈ RN from measurements y = Ax + η, where y ∈ RM,

A ∈ RM×N (M ≪ N) is a measurement matrix and η ∈ RM represents a vector of measurement

errors. Compressed sensing solves the following constrained ℓ0-minimization problem:

min
x∈RN

∥x∥0 s.t. y = Ax+ η, (1.1)

where ∥x∥0 denotes the number of nonzero components of x. However, the problem (1.1) is

NP-hard [8]. In order to overcome this difficulty, ℓ1 norm minimization was proposed as a
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substitution [2, 9, 10]:

min
x∈RN

∥x∥1 s.t. y = Ax+ η. (1.2)

In the above formulation, the ℓ1 norm is defined by ∥x∥1 =
∑N

i=1 |xi|. The problem (1.2) can

be solved by interior-point methods [11], alternating direction method of multipliers (ADMM)

[12], iterative re-weighted least squares [13, 14, 36, 37] and so on. It is worth noting that Esser

et al. proposed the ℓ1−2 minimization in [15]. This method was introduced as a sparsity

penalty for nonnegative least squares problems and was later applied to sparse vector recovery.

In [16], Yin et al. had proved that when the measurement matrix obeys some conditions related

to RIP, the ℓ1−2 minimization method can exactly recover any sparse signals. In addition,

their experimental results also showed that this method has better performance than the other

methods when the matrix A is highly coherent. This optimization problem can be formulated

as

min
x∈RN

∥x∥1 − ∥x∥2 s.t. y = Ax+ η. (1.3)

It is known that the assumption on the sparsity of signals heavily affects the recovery

performance of CS. In dealing with sparse signal recovery problems, the traditional compressed

sensing methods may ignore their deeper sparse structures, such as block sparsity. Improving the

original ℓ0 norm minimization, and letting it reflect the relevant characteristics of the block has

become a natural choice. In this paper, we address this problem that the signal is block sparse.

Such structured sparse signals extensively emerge in various applications. Prominent examples

include machine learning [17], channel estimation [18] and source location [19]. Moreover,

potential applications and recovery algorithms can be found in a series of recent references

(e.g. [20–24]). To facilitate the description of the block sparse signal, we assume that there are

m blocks with block size d = N/m in x. That is to say, we can write the signal x as

x = [x1, · · · , xd︸ ︷︷ ︸
x[1]

, xd+1, · · · , x2d︸ ︷︷ ︸
x[2]

, · · · , xN−d+1, · · · , xN︸ ︷︷ ︸
x[m]

]T,

where x[i] denotes the ith block of x. We call a vector x block k-sparse if it has at most

k nonzero blocks, i.e., ∥x∥2,0 ≤ k, where ∥x∥2,0 =
∑m

i=1 I(∥x[i]∥2) and I(x) represents the

indicator function. The block sparse recovery is to deal with the following problem

min
x∈RN

∥x∥2,0 s.t. y = Ax+ η. (1.4)

Similar to non-convex model (1.1), solving (1.4) is also intractable. To recover block sparse

signal in a more tractable way, Lin and Li [25] and Wang et al. [26] proposed the mixed ℓ2/ℓ1
norm minimization method:

min
x∈RN

∥x∥2,1 s.t. y = Ax+ η, (1.5)

where ∥x∥2,1 =
∑m

i=1 ∥x[i]∥2. This method was posed to recover block sparse signals via

using the ℓ2 and ℓ1 norms simultaneously. Specially, the ℓ1 norm characterizes the inter-block

sparsity in [∥x[1]∥2, ..., ∥x[m]∥2]T, the ℓ2 norm characterizes the intra-block cooperation in x[i].

Recently, Wang et al. [27] introduced the ℓ2/ℓ1−2 minimization form:

min
x∈RN

∥x∥2,1 − ∥x∥2 s.t. y = Ax+ η, (1.6)


