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Abstract

Here we consider the numerical approximations of the 2D simplified Ericksen-Leslie

system. We first rewrite the system and get a new system. For the new system, we propose

an easy-to-implement time discretization scheme which preserves the sphere constraint at

each node, enjoys a discrete energy law, and leads to linear and decoupled elliptic equations

to be solved at each time step. A discrete maximum principle of the scheme in the finite

element form is also proved. Some numerical simulations are performed to validate the

scheme and simulate the dynamic motion of liquid crystals.
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1. Introduction

Here we consider the 2D simplified Ericksen-Leslie system which models the hydrodynamics

of nematic liquid crystals. The system is a simplified version of the Ericksen-Leslie system

introduced by Ericksen [12] and Leslie [20]. Since the full Ericksen-Leslie system is too compli-

cated, Lin [21] proposed this simplified version in 1989. The model is derived as the following

coupled system:

dt + (u · ∇)d = ∆d+ |∇d|2d, (1.1)

|d| = 1, (1.2)

ut + u · ∇u+∇P = ∆u−∇ · ((∇d)T∇d), (1.3)

∇ · u = 0. (1.4)

Here, Ω is a bounded domain in R
2, the given time T > 0. u,d : Ω × [0, T ] → R

2 are the

fluid velocity and the mean orientation of the molecules respectively, P : Ω× [0, T ] → R is the

fluid pressure. Equation (1.3) is the Navier-Stokes equation [31] coupled with the extra term
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∇ · ((∇d)T∇d), and equation (1.1) is the harmonic map heat flow with the convection term

(u · ∇)d [25].

We will investigate the system with homogeneous Dirichlet boundary conditions for the

velocity field and homogeneous Neumann boundary conditions for the director field:

u = 0,
∂d

∂n
= 0, on ∂Ω× (0, T ), (1.5)

where n denotes the outer normal vector on the boundary.

The initial conditions are used as follows:

d(x, 0) = d0(x), u(x, 0) = u0(x), in Ω, (1.6)

where u0 : Ω → R
2 satisfying ∇ · u0 = 0, and d0 : Ω → R

2 satisfying |d0| = 1 are given

functions. Under the boundary conditions mentioned above, the system (1.1)–(1.4) satisfies the

following energy law:

d

dt

(

1

2
‖u‖2 +

1

2
‖∇d‖2

)

+ ‖∇u‖2 + ‖∆d+ |∇d|2d‖2 = 0, (1.7)

where ‖ · ‖ denotes the L2 norm in Ω.

It requires that d must have the unit length, i.e., |d| = 1 almost everywhere. From the

numerical point of view, this constraint makes it difficult to manage since we can not imply the

sphere constraint at the nodes via interpolation. In addition, the presence of the extra term

∇ · ((∇d)T∇d) causes strong coupling [27]. Hence, a penalty function such as the Ginzburg-

Landau approximation is widely used to overcome these difficulties [22], and the general penalty

version reads as follows:

dt + (u · ∇)d+
1

ǫ2
f(d)−∆d = 0, (1.8)

ut + u · ∇u+∇P = ∆u−∇ ·
(

(∇d)T∇d
)

, (1.9)

∇ · u = 0, (1.10)

where ǫ > 0 is the penalty parameter, f(d) is the Ginzburg-Landau approximation of the

constraint |d| = 1 for small ǫ. The penalty function is the gradient of a scalar-valued function

F (d), i.e., f(d) = ∇dF (d), where,

F (d) =







1

4
(|d|2 − 1)2, if |d| 6 1,

(|d|2 − 1)2, if |d| > 1.
(1.11)

It is still an open problem that whether weak solutions (uǫ,dǫ) of the system (1.8)–(1.10)

with Dirichlet boundary conditions weakly converge to that of the system (1.1)–(1.4) as ǫ → 0

[27]. It has been proved that, up to a subsequence, (uǫ,dǫ) weakly converge to (u,d) which

satisfies a system the same as (1.1)–(1.4) except for an additional measure-valued tensor in the

equation (1.3) [24].

In [22], Lin and Liu proved the global existence of the solution of (1.8)–(1.10) with Dirichlet

boundary conditions in the dimension two and three. Later, Lin and Liu in [23] proved partial

regularity of weak solutions to the system in the dimension three. Since the Ericksen-Leslie

system with |d| = 1 is complicated, it was a challenging problem to prove global existence of


