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Abstract

We develop a generalization of Nesterov’s accelerated gradient descent method which

is designed to deal with orthogonality constraints. To demonstrate the effectiveness of

our method, we perform numerical experiments which demonstrate that the number of

iterations scales with the square root of the condition number, and also compare with

existing state-of-the-art quasi-Newton methods on the Stiefel manifold. Our experiments

show that our method outperforms existing state-of-the-art quasi-Newton methods on some

large, ill-conditioned problems.

Mathematics subject classification: 65K05, 65N25, 90C30, 90C48.

Key words: Riemannian optimization, Stiefel manifold, Accelerated gradient descent,

Eigenvector problems, Electronic structure calculations.

1. Introduction

Optimization problems over the set of orthonormal matrices arise naturally in many scientif-

ic and engineering problems. Most notably, eigenfunction and electronic structure calculations

involve minimizing functions over the set of orthonormal matrices [1,3,9,21]. In these applica-

tions, the objective functions are smooth but often ill-conditioned. There are also more recent

applications which involve non-smooth objectives, most notably the calculation of compressed

modes [13, 14], which involve an L1 penalization of variational problems arising in physics.

In this paper, we consider optimization problems with orthogonality constraints, i.e. prob-

lems of the form

argmin
XTX=Ik

f(X), (1.1)

where X is an n×k matrix, Ik is the identity matrix, and f is a smooth function. The manifold

of orthonormal matrices over which we are optimizing is referred to as the Stiefel manifold in the

literature. Many methods have been proposed for solving (1.1), including variants of gradient

descent, Newton’s method, quasi-Newton methods, and non-linear conjugate gradient methods

[1, 3, 4, 18, 22]. However, existing methods can suffer from slow convergence when the problem

is ill-conditioned, by which we mean that the Hessian of f at (or near) the minimizer is ill-

conditioned [3]. Such problems are of particular interest, since they arise when doing electronic

structure calculations, or when solving non-smooth problems by smoothing the objective, for

instance. Moreover, preconditioning such problems can be very difficult due to the manifold

constraint.

In an attempt to solve ill-conditioned problems more efficiently, we develop an extension of

the well-known Nesterov’s accelerated gradient descent algorithm [10] designed for optimizing
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functions on the Stiefel manifold. For the class of smooth, strongly convex functions on R
n,

accelerated gradient descent obtains an asymptotically optimal iteration complexity of O(
√
κ),

compared to O(κ) for gradient descent with optimal step size selection (see [2], section 3.7, here

κ is the condition number of the problem). Our method extends this convergence behavior

from R
n to the Stiefel manifold, thus providing an efficient method for solving ill-conditioned

optimization problems with orthogonality constraints.

Other work on accelerated gradient methods on manifolds includes [8] and [20]. In [8] an

accelerated gradient method on general manifolds is presented. However, their algorithm in-

volves solving a non-linear equation involving both the metric on the manifold and the objective

function f . Unfortunately, solving this equation is only feasible for the special type of model

problem which they consider and cannot be generally applied to arbitrary optimization prob-

lems on the Stiefel manifold. In [20], a theory is developed which shows that a certain type

of accelerated method can achieve accelerated convergence locally. However, their method in-

volves calculating a geodesic logarithm in every iteration and has not yet been implemented,

although an iterative method for calculating the geodesic logarithm has been developed in [23].

In constrast, our method only involves very simple linear algebra calculations in each iteration

and can be run efficiently on large problems.

The paper is organized as follows. In Section 2, we briefly introduce the necessary notation

and ideas from differential geometry. In Section 3, we discuss accelerated gradient descent on

R
n. We recall results which are relevant to our work. In Section 4, we detail the design of

our method. One of the key ingredients is an efficient procedure for performing approximate

extrapolation and interpolation on the manifold, which we believe could be useful in developing

other optimization methods. In Section 5, we show numerical results which provide evidence

that our method achieves the desired iteration complexity. Finally, in Section 6, we present

comparisons with other optimization methods on the Stiefel manifold. We show that our method

outperforms existing state of the art methods on some large, ill-conditioned problems.

2. Riemannian Manifolds

In this section, we briefly introduce the notation we will use in the rest of the paper con-

cerning the Stiefel manifold and differential geometry in general. We also collect some formulas

for calculating on the Stiefel manifold which will be used later. Some references for differential

geometry include [6, 16] and for the geometry of the Stiefel manifold, see [3].

Let M be a smooth manifold and x ∈ M . We denote the tangent space of M at x by

TxM and the dual tangent space by (TxM)∗. We denote the tangent bundle of Mby TM , and

likewise the dual tangent bundle by (TM)∗.

Suppose f is a C1 function on M . We denote the derivative of f , by ∇f(x) ∈ (TxM)∗.

Notice that the derivative of f is naturally an element of the dual tangent space (TxM)∗. If M

is a Riemannian manifold, then each tangent space TxM is equipped with a positive definite

inner product g : TxM × TxM → R. We denote the norm induced by g as ‖v‖2g and the norm

induced by g on the dual space as ‖w‖g∗.
Additionally, the inner product g provides an isometry between the tangent space and its

dual, which we denote by φg : (TxM)∗ → TxM and φ−1
g : TxM → (TxM)∗, and which are also

known as raising and lowering indices. Given a C1 function f on a Riemannian manifold M ,

an object which is often considered is the Riemannian gradient, obtained by raising the indices

of the gradient ∇f(x) ∈ (TxM)∗ to obtain a tangent vector (instead of a dual tangent vector).


