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Abstract

This work describes an accurate and effective method for numerically solving a class of

nonlinear fractional differential equations. To start the method, we equivalently convert

these types of differential equations to nonlinear fractional Volterra integral equations of

the second kind by integrating from both sides of them. Afterward, the solution of the

mentioned Volterra integral equations can be estimated using the collocation method based

on locally supported Gaussian functions. The local Gaussian-collocation scheme estimates

the unknown function utilizing a small set of data instead of all points in the solution

domain, so the proposed method uses much less computer memory and volume computing

in comparison with global cases. We apply the composite non-uniform Gauss-Legendre

quadrature formula to estimate singular-fractional integrals in the method. Because of the

fact that the proposed scheme requires no cell structures on the domain, it is a meshless

method. Furthermore, we obtain the error analysis of the proposed method and demon-

strate that the convergence rate of the approach is arbitrarily high. Illustrative examples

clearly show the reliability and efficiency of the new technique and confirm the theoretical

error estimates.
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1. Introduction

Many problems of mathematical physics, engineering and biology can be stated in the form

of differential equations including non-integer order derivatives which are an important subdivi-

sion of fractional calculus [10,12]. The analytic results on existence, uniqueness and continuous

upon data to the solution of fractional differential equations have been studied by many au-

thors [33, 36]. Finding the approximate solution for these types of differential equations is

one of the most significant problems in computational mathematics. Homotype perturbation

method [1], Haar wavelets method [13], Adomian decomposition method [14], extrapolation
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method [16], predictor-corrector method [15], fractional linear multi-steps method [25], gen-

eralized differential transform method [30], variational iteration method [38], finite difference

method [40], hybrid function method [27], multiquadric radial basis function [39], explicit meth-

ods [20], and Adams method [2] have been applied to solve these types of differential equations.

The first appearance of Gaussians as a type of radial basis functions (RBFs) seems to be in

the implicit reconstruction of a surface from unorganized points known under the name blobby

surfaces or metaballs [11]. Riemenschneider and Sivakumar [34] have studied Gaussians for

interpolating a function over a set of scattered points and their convergence behavior for varying

parameters in the exponential in 1999. Since the classical Gaussians are global functions, the

resultant coefficient matrix with respect to them will be ill-conditioned when many points in

the domain are considered for obtaining high-order accurate results [37]. To overcome these

difficulties, the Gaussians with local supports have been introduced in the manuscripts [22,35]

so-called local Gaussians. Since local Gaussians use the only geometrical data fallen within local

influence domain, they require much less computational work in comparison with the globally

types. Another additional benefit of this formulation is that we have much more freedom in

choosing the shape parameters [35].

This paper presents a computational scheme to solve the following nonlinear fractional

differential equation:

Dα
au(x) +ADβ

au(x) = f(x, u(x)), a ≤ x ≤ b, (1.1)

with initial conditions

u(a) = u0, u′(a) = u1, u(k)(a) = 0, k = 2, . . . , n− 1, (1.2)

where α, β > 0, α, β ∈ Q, α ≥ β, the unknown function u(x) must be determined, the given

function f is nonlinear respect to the variable u and A ∈ R is a non-zero constant. The method

first reduces the solution of the fractional differential equation (1.1) to the solution of a fractional

Volterra integral equation. This conversion causes the initial conditions to be occulted in the

integral equation and so the scheme requires no strategies to justify these conditions over the

approximate solution. On the other hand, the proposed method does not apply any numerical

evaluations for fractional derivatives, unlike most available methods. To handle the product

integration methods as well-known schemes for solving fractional integral equations, we need a

uniform or non-uniform mesh on the solution domain [9]. The method proposed in the current

paper utilizes the locally supported Gaussians as basis in the collocation which approximate

a the solution of the equivalent integral equation without any mesh generations. Since the

fractional integrals appeared in the method cannot be computed by the classical integration

schemes, we introduce a particular integration rule based on the use of the composite Gauss-

Legendre quadrature formula. The error analysis of the proposed method is provided. The

convergence accuracy of the new technique is examined over several illustrated examples.

In the following, we consider some advantages of the proposed method which make it at-

tractive compared with other schemes for solving fractional differential equations:

• The method does not require any domain elements, so it is identified as a meshless method.

• Since the technique applies only geometrical nodal points fallen within local influence

domain, it obtains more accurate results using much fewer volume computing.

• The algorithm of the method can be simply implemented on computers and is more

flexible for most classes of fractional differential equations.


