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Abstract

The purpose of this paper is to discuss representations of high order C0 finite element

spaces on simplicial meshes in any dimension. When computing with high order piecewise

polynomials the conditioning of the basis is likely to be important. The main result of this

paper is a construction of representations by frames such that the associated L2 condition

number is bounded independently of the polynomial degree. To our knowledge, such a rep-

resentation has not been presented earlier. The main tools we will use for the construction

is the bubble transform, introduced previously in [1], and properties of Jacobi polynomials

on simplexes in higher dimensions. We also include a brief discussion of preconditioned

iterative methods for the finite element systems in the setting of representations by frames.
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1. Introduction

The discussion in this paper is motivated by finite element discretizations of second order

elliptic equations, where C0 piecewise polynomial spaces of high polynomial degree are used

as the finite dimensional space. As the polynomial degree increases the choice of basis can

have a substantial effect on the conditioning of the linear systems to be solved. The purpose

of this paper is to discuss how to obtain representations of the finite element spaces which are

uniformly well-conditioned with respect to the polynomial degree. Here the conditioning of the

representation is measured by the L2 condition number. Furthermore, we will explain how this

influences the conditioning of the corresponding discrete systems. Since our main goal is to

discuss dependence with respect to the polynomial degree we will consider the mesh Th to be

fixed throughout the discussion below.

To motivate the discussion below, we consider a second order elliptic equation, defined on

a bounded domain Ω ∈ R
d, which admits a weak formulation of the form:

Find u ∈ H1(Ω) such that

a(u, v) = f(v), v ∈ H1(Ω), (1.1)

where H1(Ω) denotes the Sobolev space of all functions in L2 which also have all first order

partial derivates in L2. Furthermore, f is a bounded linear functional, and a is a symmetric,
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bounded, and coercive bilinear form on H1(Ω). The formulation above reflects that we are

considering an elliptic problem with natural boundary condition. If we instead consider prob-

lems with an essential boundary condition on parts of the boundary, we will obtain a weak

formulation with respect to a corresponding subspace of H1(Ω). However, the effect of such

modifications of (1.1) will have minor effects on the discussion below. Therefore, we will restrict

the discussion to problems of the form (1.1) throughout this paper.

A discretization of the problem (1.1) can be derived from a finite dimensional subspace Vh

of H1(Ω). In the finite element method Vh is typically a space of piecewise polynomials with

respect to a partition, or a mesh, Th, with global C0 continuity, and where the mesh parameter

h indicates the size of the cells of the partition. The corresponding discrete solution is defined

by:

Find uh ∈ Vh such that

a(uh, v) = f(v), v ∈ Vh. (1.2)

This system can alternatively be written as a linear system of the form Ahuh = fh, where

fh ∈ V ∗
h , and where the operator Ah : Vh → V ∗

h is defined by Ahu(v) = a(u, v), for all

u, v ∈ Vh. Hence, Ah is symmetric in the sense that for all u, v ∈ Vh, 〈Ahu, v〉 = 〈Ahv, u〉,

where 〈·, ·〉 is the duality pairing between V ∗
h and Vh. To turn the discrete system (1.2) into

a system of linear equations, written in a matrix/vector form, we need to introduce a basis

{φj}
n
j=1 for the space Vh. This means that any element v ∈ Vh can be written uniquely on the

form v =
∑

j cjφj . We denote the map from R
n to Vh given by c 7→ v for τh. In a corresponding

manner we define µh : V ∗
h → R

n by (µhf)i = 〈f, φi〉. We note that if f ∈ V ∗
h and c ∈ R

n then

µhf · c =

n
∑

i=1

〈f, φi〉ci = 〈f, τh(c)〉,

where R
n is equipped with the standard Euclidean inner product, and where we adopt the

standard “dot notation” for this inner product. Hence, µh : V ∗
h → R

n can be identified as τ∗h .

If c is the unknown vector, c = τ−1
h uh, then the system (1.2) is equivalent to the linear system

Ahc = µh(fh) ≡ τ∗h(fh), (1.3)

where Ah corresponds to the n× n matrix representing the operator τ∗hAhτh : Rn → R
n. The

matrix Ah is usually referred to as the stiffness matrix, and the element (Ah)i,j is given as

a(φi, φj). Furthermore, we note that the diagram

R
n Ah - R

n

Vh

τh

? Ah - V ∗
h

τ∗h

6

(1.4)

commutes. However, there is a striking difference between the operator Ah : Vh → V ∗
h and

its matrix representation Ah. The stiffness matrix Ah depends strongly on the choice of basis,

while the operator Ah only depends on the bilinear form a and the space Vh.

For piecewise polynomial spaces of high order the choice of basis can have dramatic effect on

the conditioning of the stiffness matrix Ah. Therefore, there are a number of contributions in

the literature discussing how to choose proper bases for C0 piecewise polynomial spaces of high


