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Abstract

For symmetric tensors, computing generalized eigenvalues is equivalent to a homogenous

polynomial optimization over the unit sphere. In this paper, we present an adaptive trust-

region method for generalized eigenvalues of symmetric tensors. One of the features is

that the trust-region radius is automatically updated by the adaptive technique to improve

the algorithm performance. The other one is that a projection scheme is used to ensure

the feasibility of all iteratives. Global convergence and local quadratic convergence of

our algorithm are established, respectively. The preliminary numerical results show the

efficiency of the proposed algorithm.
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1. Introduction

In 2005, Lim [1] and Qi [2] introduced eigenvalues and eigenvectors of symmetric tensors,

independently. Since then, various types of eigenvalues problem for symmetric tensors have

received much attention, and a series of promising research results have been obtained [3–7].

In the last decade, tensor eigenproblem has many applications in multilinear algebra [4, 6].

The corresponding results were widely applied in image analysis [8], data fitting [9, 10], signal

processing [11], quantum physics [12], automatic control [13], independent component analysis

[14, 15], etc.

Consider an mth-order n-dimensional tensor A

A = (ai1...im), ai1...im ∈ R, 1 ≤ i1, . . . , im ≤ n.

For any vector x = (x1, . . . , xn)
T ∈ Rn, we denote

(Axm−1)i :=

n
∑

i2,...,im=1

aii2...imxi2 · · ·xim , for i = 1, . . . , n,
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Axm :=
n
∑

i1,...,im=1

ai1i2...imxi1xi2 · · ·xim .

It is clear that Axm−1 is an n-dimensional column vector, Axm is an m degree homogenous

polynomial, and Axm = xTAxm−1. A is called positive definite if Axm > 0 for all x 6= 0.

We say A is symmetric if its entries ai1...im are invariant under any permutation of their

indices i1, . . . , im [2, 16, 17]. If A is symmetric, Axm satisfies ∇(Axm) = mAxm−1 [3]. Denote

the set of all real symmetric mth-order n-dimensional tensors by S [m,n]. All tensors considered

in this paper, unless stated otherwise, are symmetric.

For a tensor A, if there exist λ ∈ R and x ∈ Rn\{0} satisfying

Axm−1 = λx,

xTx = 1,
(1.1)

then λ is called a Z-eigenvalue, x is called the corresponding Z-eigenvector, and (λ, x) is called

a Z-eigenpair of A.

By the variational principle, any vector x satisfying (1.1) is a KKT point of the following

polynomial optimization problem

max
x∈Rn

Axm,

s.t. xTx = 1,
(1.2)

where (Axm, x) is the Z-eigenpair of A.

Recently, there were several algorithms to find Z-eigenvalues for solving (1.2). Hao et.

al. [18] put forth a sequential subspace projection method for solving Z-eigenvalues of large-

scale symmetric tensors. Hao et. al. [19] presented a feasible trust-region method (FTR) for

calculating Z-eigenvalues of symmetric tensors. Qi et. al. [20] proposed a direct Z-eigenvalue

method when the dimension is two. Then based on orthogonal transformations, they proposed a

direct orthogonal transformation Z-eigenvalue method in the case of order three and dimension

three.

Let A,B ∈ S [m,n]. Assume that m is even and B is positive definite, (λ, x) ∈ R×Rn\{0} is

called a generalized eigenpair of (A,B) if it satisfies

Axm−1 = λBxm−1, (1.3)

where λ is called a generalized eigenvalue, x is called the generalized vector.

One of the practical methods is to transform (1.3) into the following constrained optimization

problem

max
x∈Rn

Axm,

s.t. Bxm = 1.
(1.4)

In [1], Lim showed that the KKT point of (1.4) gives generalized eigenvalues of (1.3).

Another alternative approach for computing generalized eigenpairs (1.3) is to solve the

following nonlinear programming problem

max
x∈Rn

f(x) = Axm

Bxm ,

s.t. xTx = 1.
(1.5)


