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Abstract

Schwarz method is put forward to solve second order backward stochastic differential

equations (2BSDEs) in this work. We will analyze uniqueness, convergence, stability and

optimality of the proposed method. Moreover, several simulation results are presented to

demonstrate the effectiveness; several applications of the 2BSDEs are investigated. It is

concluded from these results that the proposed the method is powerful to calculate the

2BSDEs listing from the financial engineering.
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1. Introduction

The search for fast and efficient schemes of the backward stochastic differential equations

(BSDEs) is a challenging task. The study of parallel and distributed solutions is thus important.

These solutions employ two basic forms: domain decomposition and function decomposition

(task decomposition). The former is based on original BSDEs. It yields several sub-systems in

parallel, on each subdomain. The latter sub-divides the system of BSDEs into many components

(or task) to be parallelized.

Motivated by applications and probabilistic numerical methods for second order BSDEs

(2BSDEs), Cheridito et al. (2007) considered the connection between the 2BSDEs and fully

nonlinear parabolic PDEs. This connection is found through the dependence of a drift part. In

addition, Soner et al. (2012) proposed a form of 2BSDEs in connection with G-expectations

and G-martingales. We now present our discussed 2BSDEs, written by{
dYt = −f(t,Xt, Yt, Zt,Γt)dt+ ZtdBt,

dZt = −Atdt− ΓtdBt, t ∈ [0, T ],
(1.1)

where YT = φ(XT ) and ZT = z. At and Γ are all measurable processes. φ and f are all

deterministic functions. Xt is a diffusion process. Bt = (B1
t , · · · , Brt )T is a r-dimensional

Brownian motion. Here f(t,Xt, Yt, Zt,Γt) = f(t,Xt, Yt, Zt) + Tr(Γt)/2. It is worthy noting
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that, the system of 2BSDEs (1.1) is a special case of G-BSDEs mentioned by Hu et al. (2014).

Based on stochastic integral theory, the 2BSDEs can be listed as

Yt = φ(XT ) +

∫ T

t

f(s,Xs, Ys, Zs,Γs)ds−
∫ T

t

ZsdBs, (1.2a)

Zt = z +

∫ T

t

Asds+

∫ T

t

ΓsdBs. (1.2b)

With |π| = maxi |ti+1 − ti|, and the partition π = {0 = t0 ≤ · · · ≤ ti ≤ · · · ≤ tN = T} on

[0, T ]. Y πT = φ(Xπ
T ). Xπ is a corresponding discretisation of X. We then have the following

time Euler discretisation of the 2BSDEs:

Y πti = Eπi [Y πti+1
] + f(ti, X

π
ti , Y

π
ti , Z

π
ti ,Γ

π
ti)(ti+1 − ti),

Zπti =
1

(ti+1 − ti)
Eπi [Y πti+1

(Bti+1
−Bti)],

Γπti =
1

(ti+1 − ti)
Eπi [Zπti+1

(Bti+1 −Bti)],

Aπti =
1

(ti+1 − ti)
Eπi [Zπti+1

]; i ∈ [0, N − 1],

(1.3)

which is similar to the works of Cheridito et al. (2007) and Soner et al. (2012). Under several

regularity conditions, a solution exists on Ŷt = u(t,Xt). We consider the following backward

second order parabolic PDEs on [0, T )× Rr, given by

∂tu(t, x) + f(t, x, u(t, x), Du(t, x), D2u(t, x)) = 0, (1.4a)

u(T, x) = φ(x), (1.4b)

where x = (x1, · · · , xr) ∈ Rr. Here

∂t =
∂

∂t
, Du = (Diu), D2u = (Diju), Dij = DiDj , Di =

∂

∂xi
.

Then

Ŷt = u(t,Xt), Ẑt = Du(t,Xt), Γ̂t = D2u(t,Xt), Ât = LDu(t,Xt)

is a solution of the 2BSDEs. The Dynkin operator L of X is without the drift term, see also

Cheridito et al. (2007).

As to the aforementioned 2BSDEs, we give several conditions useful for the uniqueness of

solution.

(A0). For (t, x, y, z) ∈ [0, T ]×Rr ×R×Rd, f(t, x, y, z, γ) ≥ f(t, x, y, z, γ̃) whenever γ ≤ γ̃
with γ, γ̃ ∈ Rd. For all t ∈ [0, T ], the PDEs (1.4) satisfy the comparison principle.

(A1). f satisfies Lipschitz condition when ‖v‖2 + ‖N0‖2 + ‖Q‖2 is bounded. That is, for

fixed t, there exists a constant K0 (> 0) satisfying∥∥∥f(t, x, u+ v, P +Q,M +N0)− f(t, x, u, P,M)
∥∥∥
2
≤ K0

T − t

(
‖v‖2 + ‖N0‖2 + ‖Q‖2

)
.

(A0) constraints the viscosity of Equations (1.4). (A1) constraints the elements of f(t, x, ·, ·, ·),
and is a stronger consistency condition. In this case, Equations (1.4) have a solution. A u-

niqueness theorem and a simplified proof are respectively as follows.


