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Abstract

In this paper, we consider a modified alternating positive semidefinite splitting precon-

ditioner for solving the saddle point problems arising from the finite element discretization

of the hybrid formulation of the time-harmonic eddy current model. The eigenvalue distri-

bution and an upper bound of the degree of the minimal polynomial of the preconditioned

matrix are studied for both simple and general topology. Numerical results demonstrate the

effectiveness of the proposed preconditioner when it is used to accelerate the convergence

rate of Krylov subspace methods such as GMRES.
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1. Introduction

The time-harmonic eddy current model is often used to simulate the electromagnetic phe-

nomena concerning alternating currents at low frequencies (see [15,42–44]). The main equations

of this model are Faraday’s law

∇×H = σE + Je in Ω, (1.1)

and Ampère’s law

∇×E = −iωµH in Ω, (1.2)

where E, H and Je are the electric field, the magnetic field and a given generator current,

respectively. Here, ∇× is the curl operator, i.e.,

∇× v :=
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where v = (vx, vy, vz)T is a vector valued function.
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Fig. 1.1. The classical computational domain of the time-harmonic eddy current models.

Fig. 1.1 presents a classical computational domain Ω of the time-harmonic eddy current

models. Without loss of generality, the computational domain Ω ⊂ R3 is assumed to be a

simply connected Lipschitz polyhedron, which consists of a conducting region ΩC ⊂ Ω and its

complement ΩI = Ω \ΩC , with ΩC and ΩI representing the closed sub-domains corresponding

to ΩC and ΩI , respectively. We assume that ΩC and ΩI are Lipschitz polyhedrons and that ΩC

is connected but not necessarily simply connected. The magnetic permeability µ is assumed

to be a symmetric and uniformly positive-definite 3 × 3 tensor with entries in L∞(Ω). The

same assumption holds for the electric conductivity σ in the conducting region whereas it is

null in nonconducting regions. The real scalar constant ω 6= 0 is a given angular frequency. In

addition, the symbol i denotes the imaginary unit, i.e., i =
√
−1, ∂Ω denotes the boundary of

the domain Ω, Γ = ΩC ∩ΩI , and n|∂Ω and n|Γ represent the unit outward normal vectors on Ω

and on Γ pointing toward ΩI , respectively. For a given vector field v defined in Ω, we denote

by vL the restriction to ΩL (L = C, I).

Since σ ≡ 0 in the nonconducting region, the generator current has to satisfy the compati-

bility conditions

∇ · Je,I = 0 in ΩI , (1.3)∫
Γ

Je,I · n|ΓdS = 0, (1.4)

where dS is a surface increment. Here, ∇· is the divergence operator, i.e.,

∇ · v :=
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

,

where v = (vx, vy, vz)T is a vector valued function.

The equations (1.1) and (1.2) do not completely determine the electric field in ΩI , and it is

necessary to require the gauge condition

∇ · (εEI) = 0 in ΩI , (1.5)

where ε is the dielectric permittivity, which is also assumed to be a symmetric uniformly positive

definite tensor with entries in L∞(Ω).

Most often, some suitable boundary conditions must be assigned in the boundary of the

computational domain Ω, for example, the tangential component of the electric field, E×n, or

the magnetic field, H× n, are given. Here, we assume that

H× n|∂Ω = 0 on ∂Ω. (1.6)


