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Abstract

In this paper, we derive a residual based a posteriori error estimator for a modified

weak Galerkin formulation of second order elliptic problems. We prove that the error

estimator used for interior penalty discontinuous Galerkin methods still gives both upper

and lower bounds for the modified weak Galerkin method, though they have essentially

different bilinear forms. More precisely, we prove its reliability and efficiency for the actual

error measured in the standard DG norm. We further provide an improved a priori error

estimate under minimal regularity assumptions on the exact solution. Numerical results

are presented to verify the theoretical analysis.
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1. Introduction

Weak Galerkin (WG) finite element methods (FEM) were initially proposed and analyzed

in [44, 45, 56, 57] for second elliptic problems. Since then, WG methods have been extend-

ed to solving biharmonic equations [42, 48, 52, 77], linear elasticity problems [12, 55], Stokes

equations [11, 58, 76], Brinkman problems [43, 64], Darcy-Stokes equations [15, 37], Helmholtz

equations [24, 46, 61], Maxwell equations [49, 51, 67], Biot’s consolidation model [16, 31, 69],

Reissner-Mindlin plate problems [47], the Cahn-Hilliard equation [60], convection-diffusion-

reaction equations [10, 39], eigenvalue problems [73–75] and other problems [32, 36, 38, 41, 68].

More recently, a primal-dual WG methods was proposed to solve second order elliptic equations
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in non-divergence form [54], and it was also extended to solving the Fokker-Planck type equa-

tions in [53]. WG methods are based on weak derivatives which allow for totally discontinuous

functions of piecewise polynomials on partitions. Therefore, WG methods have many advan-

tages similar to discontinuous Galerkin (DG) methods [3], including the property of high order

of accuracy, the flexibility in handling unstructured meshes, and their suitability for hp-adaptive

computations. We also refer the reader to [59] for the similarities and differences between WG

methods and hybridizable discontinuous Galerkin (HDG) methods. More recently, a unified

study of conforming FEM, nonconforming FEM, mixed FEM, WG methods and HDG methods

is presented in [29].

In this paper, we attempt to give a posteriori error analysis for a modified weak Galerkin

method for the second order problem:

−∆u = f in Ω,

u = g on ∂Ω,
(1.1)

where Ω ⊂ Rd(d = 2, 3) is a bounded polyhedral domain with boundary ∂Ω, f ∈ L2(Ω) and

g ∈ H1/2(∂Ω).

For simplicity, we present our analysis for the model problem (1.1) only in two dimen-

sions. The extension to three dimensional problem can be obtained with only straightforward

modifications.

The modified weak Galerkin (MWG) considered in this work was proposed in [63] to solve

the problem (1.1), therein a priori error analysis was carried out detailedly. We find that similar

idea was also presented in [35], but it was called dual wind DG method. By employing a new

modified weak derivative, the MWG method contains a interior penalty term which is similar

to interior penalty DG (IPDG) methods, but it needs not choose large parameter to satisfy the

stability. Some applications of MWG methods to other problems such as parabolic equations,

Sobolev equations, Stokes equations, variational inequalities and Biot’s consolidation model,

can be found in [26], [27], [50], [72] and [62], respectively.

A posteriori error estimates for DG methods have been extensively explored in the literature

(see, for example, [1, 2, 4, 5, 8, 9, 20–22, 25, 30, 33, 40, 65, 71] and references therein). However,

for WG methods, most of the existing works concentrate only on a priori error estimates, the

corresponding a posteriori error analysis is very rare. The first work in this direction was by

Chen, Wang and Ye in [14], where they have proposed and analyzed a residual based a posteriori

error estimator for WG methods, the techniques they used rely on the Helmholtz decomposition.

Later on, by employing some techniques used for IPDG methods [33], Zhang and Lin [78] derived

a posterior error estimator for the MWG method. The resulting posteriori estimators obtained

in [14,78] both contain the terms hT ||f + div(∇wuh)||0,T and h
1/2
e ||J∇wuh · neK||0,e, with ∇wuh

the weak gradient of WG finite element solution uh. Thus, the error estimators in [14, 78] are

different from the ones developed by Karakashian and Pascal for IPDG methods [33]. Since the

MWG method has a interior penalty term similar to IPDG methods, one may ask a natural

question: Can the error estimator used for IPDG methods [33] still gives theoretical upper

and lower bounds for the MWG method? The answer to this question is not straightforward

because the MWG method has itself special bilinear form. The first contribution of our work

is to answer this question in the affirmative. To this end, we first define the error estimator as

follows:

η2
h =

∑
T∈Th

η2
T +

∑
e∈Eh

η2
e,1 +

∑
e∈EIh

η2
e,2, (1.2)


