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Abstract

We prove a theorem concerning the approximation of generalized bandlimited mul-

tivariate functions by deep ReLU networks for which the curse of the dimensionality is

overcome. Our theorem is based on a result by Maurey and on the ability of deep ReLU

networks to approximate Chebyshev polynomials and analytic functions efficiently.
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1. Introduction

The curse of dimensionality is a inevitable issue in high-dimensional scientific computing.

Standard numerical algorithms whose cost is exponential in the dimension d are prohibitive

when d is large. As a mesh-free function parametrization tool, neural networks are believed

to be a suitable approach to conquer the curse of dimensionality. In this paper, we show that

deep ReLU networks overcome the curse of dimensionality for generalized bandlimited functions,

which we shall define at the end of the introduction. Let us first quickly review what networks

are.

Shallow networks are approximations f̃W of multivariate functions f : Rd → R of the form

f̃W (x) =
W∑

i=1

αiσ(wi · x+ θi), (1.1)

for some activation function σ : R → R, weights αi, θi ∈ R, wi ∈ R
d and integer W ≥ 1. Each

operation σ(wi · x + θi) is called a unit and the W units in (1.1) form a hidden layer ; this is

a special form of nonlinear approximation [1, 2]. Deep networks are compositions of shallow

networks and have several hidden layers, and each unit of each layer performs an operation
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of the form σ(w · x + θ). Following Yarotsky [3], we allow connections between units in non-

neighboring layers. We define the depth L of a network as the number of hidden layers and the

size W as the total number of units. In practice, networks with depth L = O(1) are considered

shallow, while deep networks have typically L ≫ 1 layers.

Before the revolution of deep learning [4], most research concerned shallow networks with

sigmoid activation functions. Nowadays, networks using the REctifier Linear Unit (ReLU )

activation function σ(x) = max(0, x) have become the most popular tool, partly because sigmoid

activation functions lead to severe gradient degeneracy during the optimization process. It was

also shown in [5] that deep ReLU networks produce sparsity that helps a wide range of machine

learning applications; smooth activation functions, including smoothed ReLU functions, do not.

This is why we focus on ReLU networks in this paper.

The theory of approximating functions using shallow networks goes back to 1989 when

Cybenko showed that any continuous functions can be approximated by shallow networks [6],

while Hornik, Stinchcombe and White proved a similar result for Borel measurable functions [7].

In the 1990s, the attention shifted to the approximation power1) of shallow networks [8–11].

Of particular interest was the absence of the curse of dimensionality in the approximation of

functions with fast decaying Fourier coefficients [12].

Fast forward to the 2010s and the success of deep networks, one of the most important

theoretical problems is to determine why and when deep networks can lessen or break the curse

of dimensionality, especially for ReLU networks. One may focus on a particular set of functions

which have a very special structure (such as compositional or polynomial), and show that for

this particular set deep networks overcome the curse of dimensionality [13–21]. Alternatively,

one may consider a function space that is more generic for multivariate approximation in high

dimensions, such as Korobov spaces [22], and prove convergence results for which the curse of

dimensionality is lessened [23].

In this paper, we may consider generalized bandlimited functions f : B = [0, 1]d → R of the

form

f(x) =

∫

Rd

F (w)K(w · x)dw, suppF ⊂ [−M,M ]d, M ≥ 1, (1.2)

for some square-integrable function F : [−M,M ]d → C and analytic kernel K : R → C. This

class of functions contains several examples of Reproducing Kernel Hilbert Spaces (RKHSs),

including the space of bandlimited functions. The latter are ubiquitous in science and engineer-

ing. In information theory, bandlimited signals are often used for analysis and representation

after sampling. In scientific computing, after discretization, functions are bandlimited by the

Nyquist–Shannon sampling theorem. Studying the approximation power of ReLU networks for

bandlimited functions is particularly important for neural network-based scientific computing

in high dimensions. In Section 3, we shall show that for any measure µ such functions can be ap-

proximated to accuracy ǫ in the L2(B, µ)-norm by deep ReLU networks of depth L = O
(
log22

1
ǫ

)

and size W = O
(

1
ǫ2 log

2
2

1
ǫ

)
.

We review some properties of deep ReLU networks in Section 2, providing new proofs of

existing results (Propositions 2.2 and 2.3), as well as presenting new results (Propositions 2.4

and 2.5, Theorem 2.1). In Section 3, we recall an existing theorem (Theorem 3.1), before

proving our main theorem (Theorem 3.2).

1) For a real-valued function f in Rd whose smoothness is characterized by some integer m ≥ 1, and for some

prescribed accuracy ǫ > 0, one shows that there exists a shallow network f̃W of size W = W (d,m) that satisfies

‖f − f̃W ‖ ≤ ǫ for some norm ‖ · ‖.


